Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multimodal biomedical AI

Abstract

The increasing availability of biomedical data from large biobanks, electronic health records, medical imaging, wearable and ambient biosensors, and the lower cost of genome and microbiome sequencing have set the stage for the development of multimodal artificial intelligence solutions that capture the complexity of human health and disease. In this Review, we outline the key applications enabled, along with the technical and analytical challenges. We explore opportunities in personalized medicine, digital clinical trials, remote monitoring and care, pandemic surveillance, digital twin technology and virtual health assistants. Further, we survey the data, modeling and privacy challenges that must be overcome to realize the full potential of multimodal artificial intelligence in health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Data modalities and opportunities for multimodal biomedical AI.
Fig. 2: Simplified illustration of the novel technical concepts in multimodal AI.

Similar content being viewed by others

References

  1. Esteva, A. et al. A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Esteva, A. et al. Deep learning-enabled medical computer vision. NPJ Digit. Med. 4, 5 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sidransky, D. Emerging molecular markers of cancer. Nat. Rev. Cancer 2, 210–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Food and Drug Administration. List of cleared or approved companion diagnostic devices (in vitro and imaging tools) https://www.fda.gov/medical-devices/in-vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-in-vitro-and-imaging-tools (2021).

  8. Food and Drug Administration. Nucleic acid-based tests https://www.fda.gov/medical-devices/in-vitro-diagnostics/nucleic-acid-based-tests (2020).

  9. Foundation Medicine. Why comprehensive genomic profiling? https://www.foundationmedicine.com/resource/why-comprehensive-genomic-profiling (2018).

  10. Oncotype IQ. Oncotype MAP pan-cancer tissue test https://www.oncotypeiq.com/en-US/pan-cancer/healthcare-professionals/oncotype-map-pan-cancer-tissue-test/about-the-test-oncology (2020).

  11. Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2018).

    Article  Google Scholar 

  12. Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 1–21 (2021).

    Article  Google Scholar 

  13. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Choi, S. W., Mak, T. S. -H. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 15, 2759–2772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Damask, A. et al. Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. Circulation 141, 624–636 (2020).

    Article  PubMed  Google Scholar 

  16. Marston, N. A. et al. Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER trial. Circulation 141, 616–623 (2020).

    Article  PubMed  Google Scholar 

  17. Duan, R. et al. Evaluation and comparison of multi-omics data integration methods for cancer subtyping. PLoS Comput. Biol. 17, e1009224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang, M., Ko, E. & Mersha, T. B. A roadmap for multi-omics data integration using deep learning. Brief. Bioinform. 23, bbab454 (2022).

  19. Wang, T. et al. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nat. Commun. 12, 3445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, X.-M., Liang, L., Liu, L. & Tang, M.-J. Graph neural networks and their current applications in bioinformatics. Front. Genet. 12, 690049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuchroo, M. et al. Multiscale PHATE identifies multimodal signatures of COVID-19. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01186-x (2022).

  23. Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J. & Shah, S. P. Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 22, 114–126 (2021).

  24. Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. He, B. et al. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat. Biomed. Eng. 4, 827–834 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01075-3 (2021).

  27. Janssens, A. C. J. W. Validity of polygenic risk scores: are we measuring what we think we are? Hum. Mol. Genet 28, R143–R150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kellogg, R. A., Dunn, J. & Snyder, M. P. Personal omics for precision health. Circ. Res. 122, 1169–1171 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Owen, M. J. et al. Rapid sequencing-based diagnosis of thiamine metabolism dysfunction syndrome. N. Engl. J. Med. 384, 2159–2161 (2021).

    Article  PubMed  Google Scholar 

  30. Moore, T. J., Zhang, H., Anderson, G. & Alexander, G. C. Estimated costs of pivotal trials for novel therapeutic agents approved by the US food and drug administration, 2015–2016. JAMA Intern. Med. 178, 1451–1457 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sertkaya, A., Wong, H. -H., Jessup, A. & Beleche, T. Key cost drivers of pharmaceutical clinical trials in the United States. Clin. Trials 13, 117–126 (2016).

    Article  PubMed  Google Scholar 

  32. Loree, J. M. et al. Disparity of race reporting and representation in clinical trials leading to cancer drug approvals from 2008 to 2018. JAMA Oncol. 5, e191870 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Steinhubl, S. R., Wolff-Hughes, D. L., Nilsen, W., Iturriaga, E. & Califf, R. M. Digital clinical trials: creating a vision for the future. NPJ Digit. Med. 2, 126 (2019).

    Article  Google Scholar 

  34. Inan, O. T. et al. Digitizing clinical trials. NPJ Digit. Med. 3, 101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dunn, J. et al. Wearable sensors enable personalized predictions of clinical laboratory measurements. Nat. Med. 27, 1105–1112 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marra, C., Chen, J. L., Coravos, A. & Stern, A. D. Quantifying the use of connected digital products in clinical research. NPJ Digit. Med. 3, 50 (2020).

  37. Steinhubl, S. R. et al. Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation: the mSToPS randomized clinical trial. JAMA 320, 146–155 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pandit, J. A., Radin, J. M., Quer, G. & Topol, E. J. Smartphone apps in the COVID-19 pandemic. Nat. Biotechnol. 40, 1013–1022 (2022).

  39. Pallmann, P. et al. Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Med. 16, 29 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Klarin, D. & Natarajan, P. Clinical utility of polygenic risk scores for coronary artery disease. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-021-00638-w (2021).

  41. Lim, B., Arık, S. Ö., Loeff, N. & Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 37, 1748–1764 (2021).

    Article  Google Scholar 

  42. Zhang, X., Zeman, M., Tsiligkaridis, T. & Zitnik, M. Graph-guided network for irregularly sampled multivariate time series. In International Conference on Learning Representation (ICLR, 2022).

  43. Thorlund, K., Dron, L., Park, J. J. H. & Mills, E. J. Synthetic and external controls in clinical trials—a primer for researchers. Clin. Epidemiol. 12, 457–467 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Food and Drug Administration. FDA approves first treatment for a form of Batten disease https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-form-batten-disease#:~:text=The%20U.S.%20Food%20and%20Drug,specific%20form%20of%20Batten%20disease (2017).

  45. Food and Drug Administration. Real-world evidence https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence (2022).

  46. AbbVie. Synthetic control arm: the end of placebos? https://stories.abbvie.com/stories/synthetic-control-arm-end-placebos.htm (2019).

  47. Unlearn.AI. Generating synthetic control subjects using machine learning for clinical trials in Alzheimer’s disease (DIA 2019) https://www.unlearn.ai/post/generating-synthetic-control-subjects-alzheimers (2019).

  48. Noah, B. et al. Impact of remote patient monitoring on clinical outcomes: an updated meta-analysis of randomized controlled trials. NPJ Digit. Med. 1, 20172 (2018).

  49. Strain, T. et al. Wearable-device-measured physical activity and future health risk. Nat. Med. 26, 1385–1391 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iqbal, S. M. A., Mahgoub, I., Du, E., Leavitt, M. A. & Asghar, W. Advances in healthcare wearable devices. NPJ Flex. Electron. 5, 9 (2021).

    Article  Google Scholar 

  51. Mandel, J. C., Kreda, D. A., Mandl, K. D., Kohane, I. S. & Ramoni, R. B. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. J. Am. Med. Inform. Assoc. 23, 899–908 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Haque, A., Milstein, A. & Fei-Fei, L. Illuminating the dark spaces of healthcare with ambient intelligence. Nature 585, 193–202 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Kwolek, B. & Kepski, M. Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Prog. Biomed. 117, 489–501 (2014).

    Article  Google Scholar 

  54. Wang, C. et al. Multimodal gait analysis based on wearable inertial and microphone sensors. In 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) 1–8 (2017).

  55. Luo, Z. et al. Computer vision-based descriptive analytics of seniors’ daily activities for long-term health monitoring. In Proc. Machine Learning Research Vol. 85, 1–18 (PMLR, 2018).

  56. Coffey, J. D. et al. Implementation of a multisite, interdisciplinary remote patient monitoring program for ambulatory management of patients with COVID-19. NPJ Digit. Med. 4, 123 (2021).

    Article  Google Scholar 

  57. Whitelaw, S., Mamas, M. A., Topol, E. & Van Spall, H. G. C. Applications of digital technology in COVID-19 pandemic planning and response. Lancet Digit. Health 2, e435–e440 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wu, J. T., Leung, K. & Leung, G. M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet 395, 689–697 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jason Wang, C., Ng, C. Y. & Brook, R. H. Response to COVID-19 in Taiwan: big data analytics, new technology, and proactive testing. JAMA 323, 1341–1342 (2020).

    Article  PubMed  Google Scholar 

  60. Radin, J. M., Wineinger, N. E., Topol, E. J. & Steinhubl, S. R. Harnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: a population-based study. Lancet Digit. Health 2, e85–e93 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Quer, G. et al. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 27, 73–77 (2020).

    Article  PubMed  Google Scholar 

  62. Syrowatka, A. et al. Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases. NPJ Digit. Med. 4, 96 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Varghese, E. B. & Thampi, S. M. A multimodal deep fusion graph framework to detect social distancing violations and FCGs in pandemic surveillance. Eng. Appl. Artif. Intell. 103, 104305 (2021).

    Article  Google Scholar 

  64. San, O. The digital twin revolution. Nat. Comput. Sci. 1, 307–308 (2021).

    Article  Google Scholar 

  65. Björnsson, B. et al. Digital twins to personalize medicine. Genome Med. 12, 4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kamel Boulos, M. N. & Zhang, P. Digital twins: from personalised medicine to precision public health. J. Pers. Med 11, 745 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hernandez-Boussard, T. et al. Digital twins for predictive oncology will be a paradigm shift for precision cancer care. Nat. Med. 27, 2065–2066 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Coorey, G., Figtree, G. A., Fletcher, D. F. & Redfern, J. The health digital twin: advancing precision cardiovascular medicine. Nat. Rev. Cardiol. 18, 803–804 (2021).

    Article  PubMed  Google Scholar 

  69. Masison, J. et al. A modular computational framework for medical digital twins. Proc. Natl Acad. Sci. USA 118, e2024287118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fisher, C. K., Smith, A. M. & Walsh, J. R. Machine learning for comprehensive forecasting of Alzheimer’s disease progression. Sci. Rep. 9, 13622 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Walsh, J. R. et al. Generating digital twins with multiple sclerosis using probabilistic neural networks. Preprint at https://arxiv.org/abs/2002.02779 (2020).

  72. Swedish Digital Twin Consortium. https://www.sdtc.se/ (accessed 1 February 2022).

  73. Potter, D. et al. Development of CancerLinQ, a health information learning platform from multiple electronic health record systems to support improved quality of care. JCO Clin. Cancer Inform. 4, 929–937 (2020).

    Article  PubMed  Google Scholar 

  74. Parmar, P., Ryu, J., Pandya, S., Sedoc, J. & Agarwal, S. Health-focused conversational agents in person-centered care: a review of apps. NPJ Digit. Med. 5, 21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dixon, R. F. et al. A virtual type 2 diabetes clinic using continuous glucose monitoring and endocrinology visits. J. Diabetes Sci. Technol. 14, 908–911 (2020).

    Article  PubMed  Google Scholar 

  76. Claxton, S. et al. Identifying acute exacerbations of chronic obstructive pulmonary disease using patient-reported symptoms and cough feature analysis. NPJ Digit. Med. 4, 107 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Patel, M. S., Volpp, K. G. & Asch, D. A. Nudge units to improve the delivery of health care. N. Engl. J. Med. 378, 214–216 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Roller, S. et al. Recipes for building an open-domain Chatbot. In Proc. 16th Conference of the European Chapter of the Association for Computational Linguistics 300–325 (Association for Computational Linguistics, 2021).

  80. Chen, J. H. & Asch, S. M. Machine learning and prediction in medicine - beyond the peak of inflated expectations. N. Engl. J. Med. 376, 2507–2509 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Woodfield, R., Grant, I., UK Biobank Stroke Outcomes Group, UK Biobank Follow-Up and Outcomes Working Group & Sudlow, C. L. M. Accuracy of electronic health record data for identifying stroke cases in large-scale epidemiological studies: a systematic review from the UK biobank stroke outcomes group. PLoS ONE 10, e0140533 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Szustakowski, J. et al. Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank. Nat. Genet. 53, 942–948 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Halldorsson, B. V. et al. The sequences of 150,119 genomes in the UK Biobank. Nature 607, 732–740 (2022).

  85. \Littlejohns, T. J. et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat. Commun. 11, 2624 (2020).

  86. Chen, Z. et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int. J. Epidemiol. 40, 1652–1666 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article  PubMed  Google Scholar 

  89. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. All of Us Research Program Investigators. et al. The ‘All of Us’ Research Program. N. Engl. J. Med. 381, 668–676 (2019).

    Article  Google Scholar 

  91. Mapes, B. M. et al. Diversity and inclusion for the All of Us research program: a scoping review. PLoS ONE 15, e0234962 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kaushal, A., Altman, R. & Langlotz, C. Geographic distribution of US cohorts used to train deep learning algorithms. JAMA 324, 1212–1213 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Arges, K. et al. The Project Baseline Health Study: a step towards a broader mission to map human health. NPJ Digit. Med. 3, 84 (2020).

  94. McDonald, D. et al. American Gut: an open platform for citizen science microbiome research. mSystems 3, e00031–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Johnson, A. E. W. et al. MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Johnson, A. E. W. et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci. Data 6, 317 (2019).

  97. Deasy, J., Liò, P. & Ercole, A. Dynamic survival prediction in intensive care units from heterogeneous time series without the need for variable selection or curation. Sci. Rep. 10, 22129 (2020).

  98. Barbieri, S. et al. Benchmarking deep learning architectures for predicting readmission to the ICU and describing patients-at-risk. Sci. Rep. 10, 1111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang, S.-C., Pareek, A., Zamanian, R., Banerjee, I. & Lungren, M. P. Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection. Sci. Rep. 10, 22147 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jabbour, S., Fouhey, D., Kazerooni, E., Wiens, J. & Sjoding, M. W. Combining chest X-rays and electronic health record data using machine learning to diagnose acute respiratory failure. J. Am. Med. Inform. Assoc. 29, 1060–1068 (2022).

    Article  PubMed  Google Scholar 

  101. Golbus, J. R., Pescatore, N. A., Nallamothu, B. K., Shah, N. & Kheterpal, S. Wearable device signals and home blood pressure data across age, sex, race, ethnicity, and clinical phenotypes in the Michigan Predictive Activity & Clinical Trajectories in Health (MIPACT) study: a prospective, community-based observational study. Lancet Digit. Health 3, e707–e715 (2021).

    Article  PubMed  Google Scholar 

  102. Addington, J. et al. North American Prodrome Longitudinal Study (NAPLS 2): overview and recruitment. Schizophr. Res. 142, 77–82 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Perkins, D. O. et al. Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: preliminary results from the NAPLS project. Schizophr. Bull. 41, 419–428 (2015).

    Article  PubMed  Google Scholar 

  104. Koutsouleris, N. et al. Multimodal machine learning workflows for prediction of psychosis in patients with clinical high-risk syndromes and recent-onset depression. JAMA Psychiatry 78, 195–209 (2021).

    Article  PubMed  Google Scholar 

  105. Baltrusaitis, T., Ahuja, C. & Morency, L.-P. Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41, 423–443 (2019).

    Article  PubMed  Google Scholar 

  106. Radford, A. et al. Learning transferable visual models from natural language supervision. In Proc. 38th International Conference on Machine Learning (eds. Meila, M. & Zhang, T.) vol. 139, 8748–8763 (PMLR, 18–24 July 2021).

  107. Zhang, Y., Jiang, H., Miura, Y., Manning, C. D. & Langlotz, C. P. Contrastive learning of medical visual representations from paired images and text. Preprint at https://arxiv.org/abs/2010.00747 (2020).

  108. Zhou, H. -Y. et al. Generalized radiograph representation learning via cross-supervision between images and free-text radiology reports. Nat. Mach. Intell. 4, 32–40 (2022).

  109. Akbari, H. et al. VATT: transformers for multimodal self-supervised learning from raw video, audio and text. In Advances in Neural Information Processing Systems (eds. Ranzato, M. et al.) vol. 34, 24206–24221 (Curran Associates, Inc., 2021).

  110. Bao, H. et al. VLMo: unified vision-language pre-training with mixture-of-modality-experts. Preprint at https://arxiv.org/abs/2111.02358 (2022).

  111. Dean, J. Introducing Pathways: a next-generation AI architecture https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ (10 November 2021).

  112. Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems (eds. Guyon, I. et al.) vol. 30 (Curran Associates, Inc., 2017).

  113. Dosovitskiy, A. et al. An image is worth 16x16 words: transformers for image recognition at scale. In International Conference on Learning Representations (ICLR, 2021).

  114. Li et al. Oscar: Object-semantics aligned pre-training for vision-language tasks. Preprint at https://doi.org/10.48550/arXiv.2004.06165 (2020).

  115. Baevski, A. et al. data2vec: a general framework for self-supervised learning in speech, vision and language. Preprint at https://arxiv.org/abs/2202.03555 (2022).

  116. Tamkin, A. et al. DABS: a Domain-Agnostic Benchmark for Self-Supervised Learning. In 35th Conf.Neural Information Processing Systems Datasets and Benchmarks Track (2021).

  117. Jaegle, A. et al. Perceiver: general perception with iterative attention. In Proc. 38th International Conference on Machine Learning (eds. Meila, M. & Zhang, T.) vol. 139, 4651–4664 (PMLR, 18–24 July 2021).

  118. Jaegle, A. et al. Perceiver IO: a general architecture for structured inputs & outputs. In International Conference on Learning Representations (ICLR, 2022).

  119. Hendricks, L. A., Mellor, J., Schneider, R., Alayrac, J.-B. & Nematzadeh, A. Decoupling the role of data, attention, and losses in multimodal transformers. Trans. Assoc. Comput. Linguist. 9, 570–585 (2021).

  120. Lu, K., Grover, A., Abbeel, P. & Mordatch, I. Pretrained transformers as universal computation engines. Preprint at https://arxiv.org/abs/2103.05247 (2021).

  121. Sandfort, V., Yan, K., Pickhardt, P. J. & Summers, R. M. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci. Rep. 9, 16884 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bai, X. et al. Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence. Nat. Mach. Intell. 3, 1081–1089 (2021).

    Article  Google Scholar 

  123. Berisha, V. et al. Digital medicine and the curse of dimensionality. NPJ Digit. Med. 4, 153 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Guu, K., Lee, K., Tung, Z., Pasupat, P. & Chang, M. Retrieval augmented language model pre-training. In Proc. 37th International Conference on Machine Learning (eds. Iii, H. D. & Singh, A.) vol. 119, 3929–3938 (PMLR, 13–18 July 2020).

  125. Borgeaud, S. et al. Improving language models by retrieving from trillions of tokens. In Proc. 39th International Conference on Machine Learning (eds. Chaudhuri, K. et al.) vol. 162, 2206–2240 (PMLR, 17–23 July 2022).

  126. Huang, S. -C., Pareek, A., Seyyedi, S., Banerjee, I. & Lungren, M. P. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digit. Med. 3, 136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Muhammad, G. et al. A comprehensive survey on multimodal medical signals fusion for smart healthcare systems. Inf. Fusion 76, 355–375 (2021).

    Article  Google Scholar 

  128. Fiterau, M. et al. ShortFuse: Biomedical time series representations in the presence of structured information. In Proc. 2nd Machine Learning for Healthcare Conference (eds. Doshi-Velez, F. et al.) vol. 68, 59–74 (PMLR, 18–19 August 2017).

  129. Tomašev, N. et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 572, 116–119 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rajpurkar, P. et al. CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest X-rays in patients with HIV. NPJ Digit. Med. 3, 115 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kihara, Y. et al. Policy-driven, multimodal deep learning for predicting visual fields from the optic disc and optical coherence tomography imaging. Ophthalmology https://doi.org/10.1016/j.ophtha.2022.02.017 (2022).

  132. Ramesh, A. et al. Zero-shot text-to-image generation. In Proc. 38th International Conference on Machine Learning (eds. Meila, M. & Zhang, T.) vol. 139, 8821–8831 (PMLR, 18–24 July 2021).

  133. Nichol, A. Q. et al. GLIDE: towards photorealistic image generation and editing with text-guided diffusion models. In Proc. 39th International Conference on Machine Learning (eds. Chaudhuri, K. et al.) vol. 162, 16784–16804 (PMLR, 17–23 July 2022).

  134. Reed, S. et al. A generalist agent. Preprint at https://arxiv.org/abs/2205.06175 (2022).

  135. Li, J. et al. Align before fuse: vision and language representation learning with momentum distillation. Preprint at https://arxiv.org/abs/2107.07651 (2021).

  136. Nagrani, A. et al. Attention bottlenecks for multimodal fusion. In Advances in Neural Information Processing Systems (eds. Ranzato, M. et al.) vol. 34, 14200–14213 (Curran Associates, Inc., 2021).

  137. Hughes, J. W. et al. Deep learning evaluation of biomarkers from echocardiogram videos. EBioMedicine 73, 103613 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Echle, A. et al. Deep learning in cancer pathology: a new generation of clinical biomarkers. Br. J. Cancer 124, 686–696 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Shilo, S., Rossman, H. & Segal, E. Axes of a revolution: challenges and promises of big data in healthcare. Nat. Med. 26, 29–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Hripcsak, G. et al. Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers. Stud. Health Technol. Inform. 216, 574–578 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. Rannikmäe, K. et al. Accuracy of identifying incident stroke cases from linked health care data in UK Biobank. Neurology 95, e697–e707 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Garg, R., Oh, E., Naidech, A., Kording, K. & Prabhakaran, S. Automating ischemic stroke subtype classification using machine learning and natural language processing. J. Stroke Cerebrovasc. Dis. 28, 2045–2051 (2019).

    Article  PubMed  Google Scholar 

  143. Casey, B. J. et al. DSM-5 and RDoC: progress in psychiatry research? Nat. Rev. Neurosci. 14, 810–814 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zou, J. & Schiebinger, L. Ensuring that biomedical AI benefits diverse populations. EBioMedicine 67, 103358 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Rocher, L., Hendrickx, J. M. & de Montjoye, Y. -A. Estimating the success of re-identifications in incomplete datasets using generative models. Nat. Commun. 10, 3069 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Haneuse, S., Arterburn, D. & Daniels, M. J. Assessing missing data assumptions in EHR-based studies: a complex and underappreciated task. JAMA Netw. Open 4, e210184–e210184 (2021).

    Article  PubMed  Google Scholar 

  148. van Smeden, M., Penning de Vries, B. B. L., Nab, L. & Groenwold, R. H. H. Approaches to addressing missing values, measurement error, and confounding in epidemiologic studies. J. Clin. Epidemiol. 131, 89–100 (2021).

    Article  PubMed  Google Scholar 

  149. 1000 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  150. UK10K Consortium. et al. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).

    Article  Google Scholar 

  151. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li, J. et al. Imputation of missing values for electronic health record laboratory data. NPJ Digit. Med. 4, 147 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Tang, S. et al. Democratizing EHR analyses with FIDDLE: a flexible data-driven preprocessing pipeline for structured clinical data. J. Am. Med. Inform. Assoc. 27, 1921–1934 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Che, Z. et al. Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8, 6085 (2018).

  155. Vokinger, K. N., Feuerriegel, S. & Kesselheim, A. S. Mitigating bias in machine learning for medicine. Commun. Med. 1, 25 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Gichoya, J. W. et al. AI recognition of patient race in medical imaging: a modelling study. Lancet Digit Health 4, e406–e414 (2022).

    Article  PubMed  Google Scholar 

  158. Swanson, J. M. The UK Biobank and selection bias. Lancet 380, 110 (2012).

    Article  PubMed  Google Scholar 

  159. Griffith, G. J. et al. Collider bias undermines our understanding of COVID-19 disease risk and severity. Nat. Commun. 11, 5749 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Thompson, L. A. et al. The influence of selection bias on identifying an association between allergy medication use and SARS-CoV-2 infection. EClinicalMedicine 37, 100936 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Keyes, K. M. & Westreich, D. UK Biobank, big data, and the consequences of non-representativeness. Lancet 393, 1297 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Narayanan, A. & Shmatikov, V. Robust de-anonymization of large sparse datasets. In IEEE Symposium on Security and Privacy 111–125 (2008).

  164. Gerke, S., Minssen, T. & Cohen, G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artif. Intelli. Health. 11326, 213–227(2020).

  165. Kaissis, G. A., Makowski, M. R., Rückert, D. & Braren, R. F. Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2, 305–311 (2020).

    Article  Google Scholar 

  166. Rieke, N. et al. The future of digital health with federated learning. NPJ Digit. Med. 3, 119 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ziller, A. et al. Medical imaging deep learning with differential privacy. Sci. Rep. 11, 13524 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Dayan, I. et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat. Med. 27, 1735–1743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wood, A., Najarian, K. & Kahrobaei, D. Homomorphic encryption for machine learning in medicine and bioinformatics. ACM Comput. Surv. 53, 1–35 (2020).

    Article  Google Scholar 

  170. Warnat-Herresthal, S. et al. Swarm learning for decentralized and confidential clinical machine learning. Nature 594, 265–270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhou, Z. et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107, 1738–1762 (2019).

    Article  Google Scholar 

  172. Intel. How edge computing is driving advancements in healthcare analytics; https://www.intel.com/content/www/us/en/healthcare-it/edge-analytics.html (11 March 2022.)

  173. Ballantyne, A. How should we think about clinical data ownership? J. Med. Ethics 46, 289–294 (2020).

    Article  PubMed  Google Scholar 

  174. Liddell, K., Simon, D. A. & Lucassen, A. Patient data ownership: who owns your health? J. Law Biosci. 8, lsab023 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Bierer, B. E., Crosas, M. & Pierce, H. H. Data authorship as an incentive to data sharing. N. Engl. J. Med. 376, 1684–1687 (2017).

    Article  PubMed  Google Scholar 

  176. Scheibner, J. et al. Revolutionizing medical data sharing using advanced privacy-enhancing technologies: technical, legal, and ethical synthesis. J. Med. Internet Res. 23, e25120 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463–477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Tamkin for invaluable feedback. NIH grant UL1TR002550 (to E.J.T.) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pranav Rajpurkar or Eric J. Topol.

Ethics declarations

Competing interests

Since completing this Review, J.N.A. became an employee of Rad AI. All the other authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Joseph Ledsam, Leo Anthony Celi and Jenna Wiens for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta, J.N., Falcone, G.J., Rajpurkar, P. et al. Multimodal biomedical AI. Nat Med 28, 1773–1784 (2022). https://doi.org/10.1038/s41591-022-01981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-022-01981-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing