The Bugs Framework (

Software Developers’ and Testers’

Irena Bojanova, Paul E. Black
National Institute of Standards and Technology (NIST)

Yaacov Yesha

National Institute of Standards and Technology (NIST)
University of Maryland Baltimore County (UMBC)

Yan Wu
Bowling Green State University (BGSU)

NHNuiionul Institute of Standards and Technology ¢ U.S. Department of Commerce

Ig -
>

https://samate.nist.gov/BF/

SSES

e They Know Your Weaknesses — Do You?

e Knowing what makes your software systems vulnerable to attacks is critical,
- as software vulnerabilities hurt:
security

reliability, and
availability of the system as a whole.

e Software — should be free of known weaknesses that compromise security
e \What is meant by software having no known weaknesses?

How to evaluate tools and services for finding weaknesses?
- Need of classification of software weakness types

e Software Weakness (Bug)
"A piece of code that may lead to a vulnerability." [1]

e Security Vulnerability
"A property of system requirements, design, implementation, or operation that could be
accidentally triggered or intentionally exploited and result in a security failure." [1]

e Software Attack

"The use of an exploit(s) by an adversary to take advantage of a weakness(s) with the intent
of achieving a negative technical impact(s)." [2]

[1] Black, P., Kass, M., Koo. M., Fong, E. Source Code Security Analysis Tool Functional Specification Version 1.1,
NIST Special Publication 500-268 v1.1.

[2] The MITRE Corporation. Common Attack Pattern Enumeration and Classification (CAPEC), Glosary, Attack.

e Security Failure
"Any event that is a violation of a particular system's explicit or implicit security policy." [1]
v "the source of any failure is a latent vulnerability." [1]
v "if there is a failure, there must have been a vulnerability." [1]
e Source Code
"A series of statements written in a human-readable computer programming language.” [1]

A vulnerability is the result [of the exploitation] of one or more weaknesses in requirements, design,
implementation, or operation. Sometimes a weakness can never result in a failure, in which case it is not
exploitable and not a vulnerability. Such a weakness might be masked by another part of the software or
might only cause a failure in combination with another weakness. Thus we use the term "weakness"
instead of "flaw" or "defect." [1]

References
[1] Black, P., Kass, M., Koo. M., Fong, E. Source Code Security Analysis Tool Functional Specification Version 1.1, NIST Special Publication 500-268 v1.1.

1. Enlightenment
» Repositories of Bugs, Vulnerabilities, and Attacks
* Problems with Current Bug Descriptions
» Need for Structured, Precise, Orthogonal Approach

2. The Bugs Framework (BF)
« BF Taxonomy
» Buffer Overflow (BOF)
» Cryptography Classes (ENC, VRF, KMN)

3. Benefits of Using BF

» Superior Unified Approach
» Accurate, Precise, Clear Taxonomy

4. More BF Classes
* Injection (INJ)
» Faulty Result (FRS)
» Control of Interaction Frequency Bugs (CIF)
+ Randomness Classes (RND, PRN)

5. Future Work

1. Enlightenment

Repositories of
Bugs,
Vulnerabilities,
and Attacks

ugs, Vulnerabilities, and Attacks

BF is being created by factoring and restructuring of information contained in many existing
repositories of bugs, vulnerabilities, and attacks and thus benefits from the community’s
experience with their use.

- Let’s take a look at them.

v

DN N N N NN

Common Weakness Enumeration (CWE)

Software Fault Patterns (SFP)

Semantic Templates (ST)

NSA Center for Assured Software (CAS) Weakness Classes

Software State-of-the-Art Resources (SOAR) Matrix

Software Engineering Institute (SEI), Carnegie Mellon University, CERT C Coding Standard
Common Vulnerabilities and Exposures (CVE)

Open Web Application Security Project (OWASP): Vulnerability

Common Attack Pattern Enumeration and Classification (CAPEC)

numeration (CWE)

Building CWE & Consensus S
CWE is a “dictionary” of every class of bug or Py ™ Gyt
flaw in software. oo ey il s o ommape e

pELDvoamks Core Security Checkmarx

'oirn VERACODE
More than 600 distinct classes, e.g., y S | yaiitet | Vanerabiity
Examples for ;x onor";‘y
‘/ BUffer OverﬂOW R(e:fgvén;)ﬂ S8t
v Directory traversal [ool Ry i
v" OS injection North Caralna sate Maviand
v" Race condition A University (NGSO) 40
. . . ¥ - ! ‘_."
v' Cross-site scripting — % o
v Hard-coded password el secre Cang
ndar
v'Insecure random numbers. Common

Vulnerabilities
and Exposures

National Secure
Programming
Skills

DHS
Software

e

CWE is a community effort.

Common
Body of
Knowledge

DHS's 'SWA!
it uild Security
Mal ent uil ri
Group System In* Web Sites

Assurance Task

DHS and NIST
Software Assurance
Metrics and Tool
Evaluation (SAMATE)

NSA Center for
Assured Software

Fig. CWE Efforts Context and Community
[http://cwe.mitre.org/about/images/lg_consensus.jpg]

CWE - for use by those who:
+ Create software
» Analyze software for security flaws
» Provide tools & services for finding & defending against security flaws in software.

CWE Compatibility and Effectiveness Program:

1. CWE Searchable 4. CWE Documentation
2. CWE Output 5. CWE Coverage
3. Mapping Accuracy 6. CWE Test Results

Designations for products or services:
v CWE Compatible — meet 1) to 4)
v CWE Effective — meet all 1) to 6) Static analysis tools:
» also encouraged to map their reports to corresponding CWEs,
 so that the results from different tools could have a standard

baseline to be matched and compared.
10

rns (SFP)

e Software Fault Patterns (SFP) is a generalized description of an identifiable family of
computations that are:
v Described as patterns with an invariant core and variant parts
v Aligned with injury
v' Aligned with operational views and risk through events
v" Fully identifiable in code (discernable)
v Aligned with CWE
v" With formally defined characteristics.

— See the clusters in Table 2 here: DoD Software Fault Patterns (go to p.26)

11

erns (SFP)

e Software Fault Patterns (SFP): Classify, Identify patterns, Test cases generator.

e SFP are a clustering of CWEs into related weakness categories.

e Each cluster is factored into formally defined attributes, with:
v Sites (“footholds”)

v Conditions e SFP categories cover 632 CWEs,

v Properties e plus there are 8 deprecated CWEs

v Sources > So, the CWEs defined as weaknesses total 640.
v' Sinks, etc.

In addition, there are:

e 21 primary clusters

e 62 secondary clusters
e 310 discernible CWEs
[J

36 unique SFPs.
12

Semantic templates (ST) build mental models,
which help us understand software
weaknesses.

ST factor out chains of causes, resources and
consequences that are present in CWEs.

Each ST is a human and machine
understandable representation of the following

phases:
1. Software faults that lead to a weakness
2.Resources that a weakness affects
attributes
4.Consequences/failures resulting from the
weakness.

Fig. Phrases in descriptions and common
consequences of CWE-120, colored according to ST:
Fault, Resource/Location, , Consequence

s (ST)

CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow?)

Description Summary: The program copies an input buffer to an output
buffer without verifying that the size of the input buffer is less than the size
of the output buffer, leading to a buffer overflow.

Extended Description: A buffer overflow condition exists when a program
attempts to put more data in a buffer than it can hold, or when a program
attempts to put data in a memory area outside of the boundaries of a buffer.
The simplest type of error, and the most common cause of buficr overflows,
is the "classic" case in which the program copies the buffer without
restricting how much is copied.

Common Consequences: Buficr overflows often can be used to execute
arbitrary code, which is usually outside the scope of a program's implicit
security policy. This can often be used to subvert any other security service.
Butfer overflows generally lead to crashes. Other attacks leading to lack of
availability are possible, including putting the program into an infinite loop.

13

SOFTWARE-FAULT

#196

IMPROPER-
INPUT-
VALIDATION

CALCULATION
#20

#682

INTEGER INTEGER
COERCION OVERFLOW IMPROPER
ERROR #190 #680 ng‘?:,sl_ll,:fug’s:
E:AGONRS naz INTEGER #231
UNDERFLOW
#194 #195

RETURN OF POINTER
VALUE OUTSIDE OF

#467 #468

MPROPER HANDLING OF
LENGTH PARAMETER
INCONSISTENCY

#130

WEAKNESS

ACCESS AND
OUT-OF-BOUNDS
READ #125, #1286,
#127, #786

ACCESS AND OUT-
OF-BOUNDS WRITE
#787, #788, #124

FAILURE TO CONSTRAIN
OPERATIONS WITHIN THE
BOUNDS OF A MEMORY
BUFFER
#119

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED
#1121

OCCURS-IN

MEMORY-
BUFFER
#119

BUFFER
#119

CONSEQUENCES

WRITE-WHAT-WHERE

CONDITION
CAN-PRECEDE #123

#170

IMPROPER
VALIDATION OF
ARRAY INDEX
#129 #789

Buffer Overflow Semantic Template

STRING

MANAGEMENT

API ABUSE

EXPECTED RANGE APl ABUSE
INCORRECT- WRAP- #466 #227
BUFFER-SIZE- AROUND POINTER MPROPER NULL
CALCULATION ERRORS TERMINATION
#131

785 #134 #251

BUFFER COPY WITHOUT
CHECKING SIZE OF INPUT
('CLASSIC BUFFER OVERFLOW')

#120

CAN-PRECEDE

HEAP-BASED
#122

INDEX

(POINTER #466
INTEGER #129)

PART-OF

INDEXABLE-
RESOURCE

UNCONTROLLED
MEMORY
ALLOCATION
#789

#118

INFORMATION
LOSS OR
OMMISSION
#199 #221

INITIALIZATION

SE OF DANDEROU
FUNCTIONS

PROPER USE O
FREED MEMORY
#415 #416

MISSING

#456

#242

IS-A

s/Classifications

» The National Security Agency (NSA) Center for Assured Software (CAS) defines Weakness
Classes in its "Static Analysis Tool Study - Methodology*.

* The Software State-of-the-Art Resources (SOAR) Matrix:

— Defines and describes a process for selecting and using appropriate analysis tools and
techniques for evaluating software for software (security) assurance.

— In particular, it identifies types of tools and techniques available for evaluating software,
as well as technical objectives those tools and techniques can meet.

« Software Engineering Institute (SEI), Carnegie Mellon University, CERT C Coding Standard
* Open Web Application Security Project (OWASP): Vulnerability

- See BF website.

15

Exposures (CVE)
meration and Classification (CAPEC)

« CVE is alist of instances of security vulnerabilities in software.
— More than 9000 CVEs assigned in 2014 — Heartbleed is CVE-2014-0160.

— NIST National Vulnerability Database (NVD) — adds fixes, severity ratings, etc. for CVEs.

« CAPEC is a dictionary and classification taxonomy of known attacks

- See: hitps://cve.mitre.org/

16

Problems with
Current Bug Descriptions

17

nt Bug Descriptions

The rise in cyberattacks lead to considerable community and government efforts to record
software weaknesses, faults, failures, vulnerabilities and attacks.

- However, none of the resulting
repositories/enumerations are
complete nor close to formal.

18

t also ...

e CWE is widely used:
v’ By far the best dictionary of software weaknesses.
v' Many tools, projects, etc. are based on CWE.

e However, in CWE:

v" Definitions are imprecise and inconsistent.

v Entrees are “coarse grained” —
bundle lots of stuff, like consequences and likely attacks.

v" The coverage is uneven —
some combinations well represented and others not represented at all.

v" No mobile weaknesses, e.g., battery drain, physical sensors (GPS, gyro, microphone, hi-res
camera), unencrypted wireless communication, etc.

19

finitions

e CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS
Command Injection’):

“The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that could
modify the intended OS command when it is sent to a downstream component. “

LE 1]

- Note that “using input”, “intended command”, and “incorrectly neutralizes” are imprecise!

20

efinitions

e Looking just at the cluster of buffer overflows, we see many problems.
e Hereis CWE-119, the “root” of buffer overflows.

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer:

“The software performs operations on a memory buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.”

- Note that “read from or write to a memory location” is not tied to the buffer!
—> Strictly speaking, this definition is not correct, as any variable is

“a memory location that is outside of the intended boundary of the buffer.”
—> Our definition says that the software can read or write through the buffer

a memory location that is outside that buffer.

And, this is just one example.

21

overage

e.g. Buffer Overflow

e Writes before start and after end:
CWE-124: Buffer Underwrite ('Buffer Underflow')
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

versus
e Writes (not expressed in title) in stack and heap:
CWE-121: Stack-based Buffer Overflow

CWE-122: Heap-based Buffer Overflow. ... while slight variants go on and on:
CWE-123: Write-what-where Condition

CWE-125: Out-of-bounds Read

CWE-787: Out-of-bounds Write

CWE-786: Access of Memory Location Before Start of Buffer
CWE-788: Access of Memory Location After End of Buffer
CWE-805: Buffer Access with Incorrect Length Value
CWE-823: Use of Out-of-range Pointer Offset

e Reads before start and after end:
CWE-127: Buffer Under-read
CWE-126: Buffer Over-read

but
e No reads from stack and heap.

22

e.g. Path Traversal — CWE for every tiny variant:
CWE-23:
CWE-24:
CWE-25:
CWE-26:
CWE-27:
CWE-28:
CWE-29:
CWE-30:
CWE-31:
CWE-32:
CWE-33:
CWE-34:
CWE-35:

lled

Relative Path Traversal

Path Traversal: '../filedir

Path Traversal: '/../filedir

Path Traversal: '/dir/../flename’
Path Traversal: 'dir/../../flename’
Path Traversal: '. Xfiledir

Path Traversal: '\..\filename’
Path Traversal: \dir\..\filename’
Path Traversal: 'dir\..\..\filename’
Path Traversal:'..." (Triple Dot)
Path Traversal:'...." (Multiple Dot)
Path Traversal: '....//

Path Traversal: ".../.../I"

Buffer overflow isn’t the only cluster with
problems.

Looks like, it is a waste to have CWEs
for every tiny variant of path traversal.

And if some other variant were identified,
a new CWE would have to be created.

23

terns (SFP) —

CWE-119: Improper Restriction of Operations within the Bounds D . Access T oy Boundary
e SFP overcomes the prob]em of a Memory Buffer kind P exceeded

Summary: The software performs operations on a memory

Of com b | natlonS Of attrl buteS buffer, but it can read from or write to a memory location that is
. outside of the intended boundary of the buffer.
N CWE . Extended description: Certain languages allow direct addressing
of memory locations and do not automatically ensure that these 119 -
locations are valid for the memory buffer that is being Impro.pe.r
Restriction of

referenced. This can cause read or write operations to be

2
<
2
<
<
2
<

- } ; Operations
performed on memory locations that may be associated with LA
9 For exam ple’ the S F P faCtO red other variables, data structures, or internal program data. As a \(/Jvfltglunﬁgrounds
H result, an attacker may be able to execute arbitrary code, alter
attrl bUteS are more Clear than the intended control flow, read sensitive information, or cause 120 - Buffer
1 the system to crash. Copy without

the irregular coverage of e B V VoA

CWES of Input
CWE-120: Buffer Copy without Checking Size of Input ('Classic 121 - Stack N ~ N ~ ~
Buffer Overflow') Overflow
Summary: The program copies an input buffer to an output 122 - Heap \/ \/ \/ \/ \/
buffer without verifying that the size of the input buffer is less Overflow
than the size of the output buffer, leading to a buffer overflow. 123 - Write- J J J J J
Extended Description: A buffer overflow condition exists when Végig;ﬁgﬁre

a program attempts to put more data in a buffer than it can

hold, or when a program attempts to put data in a memory area 124 - Buffer ~ ~ ~ ~ ~
outside of the boundaries of a buffer. Underwrite
Common Consequences: Buffer overflows often can be used to 125 - Out-of- \/ \/ \/ \/ \/
execute arbitrary code. Buffer overflows generally lead to bounds read
crashes.
126 - Buffer N N N N N
Overread
127 - Buffer N N N N N
Underread

24

STs build mental models, which help
us understand software weaknesses.

Each ST is a human and machine
understandable representation of:
1. Software faults that lead to a weakness
2. Resources that a weakness affects
3. attributes
4

. Consequences/failures resulting from
the weakness.

s (ST) —
too

CWE-119:
a

Summary: The software performs operations on a
, but it can

Extended description: Certain languages allow direct addressing
of and do not automatically ensure that these
locations are valid for the memory buffer that is being
referenced. This can

.Asa
result, an attacker may be able to execute arbitrary code, alter
the intended control flow, read sensitive information, or cause
the system to crash.

CWE-120: Copy without Checking Size of Input ('Classic
)

Summary: The program copies an input to an output

without verifying that the size of the input is less
than the size of the output , leading to a
Extended Description: A condition exists when
a program attempts to put more data in a than it can
hold, or when a program attempts to put data in a

outside of the boundaries of a

Common Consequences: often can be used to
execute arbitrary code. generally lead to
crashes.

Parameters

119 - Improper
Restriction of
Operations
within Bounds of
Buffer

120 - Buffer
Copy without
Checking Size
of Input

121 - Stack
Overflow

122 - Heap
Overflow
123 - Write-
what-where
Condition

124 - Buffer
Underwrite

125 - Out-of-
bounds read

126 - Buffer
Overread

127 - Buffer

Underread

<. 2 =2 =2

Boundary

Access kind Access position
exceeded

VA VoA
¢ Y VoA
y Y VoA
y v VoA
V VoA
y VoA

¢ VoA

¢ ¢ Y

v VA

25

CWE-119:
a Parameters

VISSING
INITIALIZATION
prie Summ

~The software performsperations on a
/SEOF DANDEROU! , but it can
FONCTIONS
#242 .
PROPER NULT PROPER USE G| Extended description: Certain languages a\ow direct afidressing
TERMINATION FREED MEMORY
Ly IS of and do not automatidfly ensurefthat these (119 - Improper
BUFFER COPY WITHOUT Restriction of
Operations ~ ~ ~ ~ ~ ~ N
within Bounds of
.Asa Buffer
result, an attacker may be ab¥¢ to execute arbitrary gode, alter 120 - Buffer
the intended control flow, read\sensitivd\informatign, or cause Copy without \/ \/ \/ \/ \/ \/

the system to crash. Checking Size
of Input

121 - Stack \/ \/ N \/ N

9f Input ('Classic Overflow

t to an output IP2SEEDD v v v v v

Boundary
exceeded

SOFTWARE-FAULT Access kind Access position

INTEGER
OVERFLOW
#190#680

INTEGER
UNDERFLOW
#191

INTEGER
COERCION

TMPROPER

HANDELING OF

EXTRA VALUES
#231

STRING

#192

RETURN OF POINTER
VALUE OUTSIDEOF
EXPECTED RANGE

#466

APIABUSE
NCORRECT- w227
BUFFER-SIZE-

CALCULATION
#131
MPROPER™
INPUT-
VALIDATION
#20

CAN PRE-CEDE

POINTER
ERRORS
1467 1468

PROPER HANDLING OF
LENGTHPARAMETER
INCONSISTENCY

INCORRECT-
CALCULATION
682

CHECKING SIZE OF INPUT
(‘CLASSIC BUFFER OVERFLOW)
#1:

CAN
PRECEDE

WEAKNESS

ACCESSAND
NDS

ACCESSANDOUT-
OF-BOUNDSWRITE
787,788, #124

FAILURETO CONSTRAIN
OPERATIONSWITHIN THE
BOUNDS OF A MEMORY

CWE-120: Copy without Che

#119

y: The program copies an in

Overflow
RESOURCE/LOCATION without verifying that the siz¢ of the input is less 123 - Write-
IMPROPER-ACCESS-OF- STACK-BASED . .
INDEXABLE RESOURCE 118 a1 than the size of the output , |fading to a . Wwhat-where ~ ~ ~ ~ N
NoBX Extended Description: A condition exists when Condition
(POINTER #466
INTEGER #129) a program attempts to put morg data in a than it can 124 - Buffer \/ \/ \/
OCCURS IN)
OGRS hRld, or when a program attempts to put data in a Underwrite
RESOURCE
aries of a
125 - Out-of-
Common C often can be used to

bounds read

<. 2 =2 =2
<. 2 =2 =2
2
<
<2

‘e arbitrary code. enerally lead to
CAN PRECEDE CONSEQUENCES UNCONTROLLED y 8 v
MEMORY crashes. 126 - Buffer N ~ N
ALLOCATION
WRITE-WHAT-WHERE Gkl Overread
CONDITION INFORMATION
LOSSOR
ogllr;;s”szlzzle 127 - Buffer ,\/ ,\/ \/
Underread

26

o Have Problems

e Software Fault Patterns (SFP):
v “Factor” weaknesses into parameters,
v' But:
* Do not include upstream causes or consequences, and
* Are based solely on CWEs.
e SFPis an excellent advance. However:
> SFP does not tie fault clusters to:
— causes or chains of fault patterns
— consequences of a particular vulnerability.

> Since SFP were derived from CWEs, more work is needed for embedded or mobile concerns, such as,
battery drain, physical sensors (e.g. Global Positioning System (GPS) location, gyroscope, microphone,
camera) and wireless communications.

Note: SFP is coupled with a meta-language, Semantics of Business Vocabularies and Rules (SBVR), in
which causes, threats, consequences, etc. may be expressed. However, SFP does not have an integrated
means of expressing them. 27

ave Problems

e Semantic Templates (ST):
v Collect CWEs into four general areas:
+ Software-fault
* Weakness
* Resource/Location
» Consequences.

v But:
 are guides to aid human comprehension.

e The other existing bug descriptions also have their own limitations.
e They are based on CWEs and don’t go beyond CWEs.

28

Need for Structured, Precise,
Orthogonal Approach

29

., Precise,
ch

» Without accurate and precise classification and comprehension of all possible types of
software bugs, the development of reliable software will remain extremely challenging.

» As a result the newly delivered and the legacy systems will continue having security holes
despite all the patching to correct errant behavior.
We don’t (yet) know the best structure for bugs descriptions.

But, for analogies on what we are embarking on, let’s look at
some well-know organizational structures in science ...

30

ers to Describe Molecules

e Greeks used the terms element and atom.
Aristotle: substances are a mix of Earth, Fire, Air, or Water.

e Alchemists cataloged substances, such as alcohol, sulfur, mercury, and salt.
(note: Lavoisier had light and caloric on his 33 elements list!)

e Periodic table reflects atomic structure & forecasts properties of missing elements.

(Source: Reich Chemistry)

1 2
H He
3 | 4
Li | Be CH3
1 [12 I
Na [Mg N
19|20 [21]22]23 24 CH; CysHN;O
K |G |[Sc|Ti [V |Cr /
37 |38 [39 | 40 | 41 |42 |43 | 44 | 45 | 46 ?"—-N
Rb | Sr | Y | Zr [Nb|Mo|Tc | Ru| Rh | Pd
ss |56 | 57727374 75| 76|77 |78 N\)
Cs |Ba|-71| Hf | Ta |W [Re | Os | Ir | Pt 0
88 | 89 | 104] 105 109
gr7 Ro |05 mF | oo 15(;6 ‘B": ‘l_?sa o ‘I;:’ (%) 1, 2, 3, 9-tetrahydro-9-methyl-3-[(2-methyl-1H-

imidazol-1-yl)methyl]-4H-carbazol-4-one

57 |58 |59 [60 [61|62 |63 | 64| 65|66| 67| 68|69 |70 71
La [Ce | Pr [Nd|[Pm|Sm|Eu |Gd | Tb | Dy| Ho| Er [Tm | Yb | Lu

B B A b B M A e s e e s Zofran ODT has a chemical formula (C,gH;oN;0),
-Known in antiquity I:Iakaeabolgpuinshedhisperiodictab!e(lgas) StrUCturaI formUIa (p|Cture), and a deta"ed name.
|:| also known when (akw) Levoisier published his list of elements (1789) I:l also known (ak) up to 2000
[Jakw Mendeleev published his periodic table (1869) [ak to 2012

Elakw Deming published his periodic table (1923) (Source: Wlklmed|a CommOnS) 31

Discoveries of more than 1,000 new types of
Bacteria and Archaea over the past 15 years
have dramatically rejiggered the Tree of Life to
account for these microscopic life forms.

e Divides life into three domains:
v' Bacteria
v" Archaea
v' Eukaryotes.

e Clearly shows "life we see around us — plants,
animals, humans” and other Eukaryotes —
represent a tiny percentage of world’s biodiversity.

Fig. The Tree of Life (Source: Berkeley) e . T Arch el

Tenevicutes

Ba Cten a Nomurabacteriae

® Kaiserbacteria

o Adlerbacteria
® Campbellbacteria

Actinobacteria Armatimonadete:
Zixibacteria Atribacteria
Cloacimonetes Aquificae
Fibrobacteres Calescamantes
Gemmatimonadetes Caldiserica
WOR-3 Die i

 TAO& Thermotegae
Poribacteria Deinococcus-Therm.
esclbacegs? Synergistetes

Firmicutes
Cyanobacteria
& Giovannonibacteria
. ® Wolfebacteria R
Jergensenbacteria

Fusobactena, /
P . #/" e Melainabacteria
Marinimicrobia b o REXI

Bacteroidetes 19 g WOR1

8 Amambacteria pareybacteria

& Yanofskybacteria
® Moranbacteria

superphylum
Planctomycetes
Chilamydi

Magasanikbacteria
Uhrbacteri "
-.F.Jlk'm::m?llzna Caﬂdldatq .
o SM2FT1 Phyla Radiation

Peregrinibacteria
o Graci

Lentisphaerae, e — - i
Verrucomicrobia “-—-__‘__:_

Omnitrophica # fas=

Aminicentantes Rokubacteri

. Acidabacteria @ - i i -
Tectomicrabia, Modn’lntlfagm;‘r]a: - ::‘\’rfé?g‘fasglias .5%402
Saccharibacteria

ifrospirae
abacteria =

Ni

Dax
?ﬂ?ﬁﬁ%‘rfﬂn}? :
Defem'bncte;e;ofe e

Hydrogenedentes NKB19
Spirochaetes

® Berkelbacteria

» Woesebacteria
eria

® Amesbacteria
*® Collierbacteria
e o ? _ Pacebacteria
(] Beckwithbacteria
L] Roizmanbacteria
Gottesmanbacteria

T™E ».
Epsilonproteabacteria

Daojkabacteria WS6 ¢

PRI Je \ Levybacteria

PR f : ;
Katanghsetens Oeviesbactena Microgenomates
WWE3

Alphaproteabacteria
Zetaproteo.
Acidithiobacillia

8 bacteri L . e
o Majorlineages with isolated representative - italics

% Major lineage lacking isolated representative - ®

0.4 Gammaprotéobacteria

Micrarchaeota @
Diapherotrites

Manohaloarchaeota g
Aenigmarchaeota ol
arvarchaeota ®|

Eukaryotes

DPANN ;
Pacearchacota g ®
Nanoarchaeota
Woesearchaeota :
Altiarchaeales Halobacteria
Z7IMEA3

Methanopyri 2 TACK
Archaea fuimes

Opisthokonta

Methanobacteria
Thermoplasmata Chromalveolata

Archaeoglobi
Methangiaicrobia Amoebozoa

e System

Specify Any Terrestrial Location using Latitude, Longitude, and Elevation.

Latitude
(North /South)
Q0]
459
00
485
0=
Latitude waries from 0°
at the equator to 50°
Morth and South at the
poles

Equator

Longitude
{(West/East)

Longitude wvaries
from 0° at
Freenwich o 180°
East and 'West

Elevation Histogram of the Earth’s Crust

elevation
in meters
8,000
6,000
 highest known permanent settlement: La Rinconada, southern Peru (5,100 m / 16,728 ft)
(a mining town with a population of around 7,000)

4,000

2,000 ‘

Sea Level
2,000
4,000
6,000

8,000

-10,000

each tick-mark represents 10% of the surface of the earth

Geographic Coordinate System (Source: Wikipedia) (about 51,006,560 km?)

33

nguage

Medical professionals have terms to precisely name muscles, bones, organs, conditions, diseases, etc.

* The caption uses precise medical terminology.

* They are not trying to obfuscate.

* They are "painting a picture" (adding arrows and
circles) with words.

- So, just as a doctor would be hampered by only
being able to say, “this thingy here”, software
assurance work is more difficult, because of the lack
of a precise common vocabulary (ontology).

Flgure 2: Computed tomography of a comatose patient with a
left temporal epldural haematoma, right parenchymal temporal
lobe haematoma, and a right convexity subdural haematoma
before and after cranlotomy and evacuation of haematomas

(Source: http://i.stack.imgur.com/ulLH9P.1po)

34

2. The Bugs Framework (BF)

35

rk (BF)

The Bugs Framework (BF) is
a precise descriptive language for bugs.

< Factoring and restructuring of information in CWEs, SFPs, and STs,
and classifications from NSA CAS, IDA SOAR, SEI-CERT, and more.

36

BF Taxonomy

37

BF is a set of bug classes. Each BF class:

O O O O

Has an accurate and precise definition and
Comprises:

v" Level (high or low) — identifies the fault as language-related or semantic.

v' Attributes — identify the software fault.

v Causes — bring about the fault.

v" Consequences — to which the fault could lead.

v Sites — locations in code where the fault might occur.

At least one attribute (underlined) identifies the software fault.
Causes and consequences are directed graphs.

Sites are identifiable mainly for low level classes

BF uses precise definitions and terminology.

BF is descriptive, not prescriptive.
v It explains what happens.

v There’s not enough detail to
usefully predict the result.

BF is language independent.

38

ClassName (ABR): <<consize definition>>.

Causes

<<cause>>

Gevalue>>>
<<class>>

<<class>>

Attributes

<<attribute>>:
v <<value>>
v <<value>>
Vo

<<attribute>>:
v <<value>>
v <<value>>
Vo

Consequences

<<consequence>>

<<consequence>>

<<class>>

39

Buffer Overflow (BOF)

40

Buffer Overflow is the best class to begin with.

Char destination[5]; char *source = “LARGER";

strcpy(destination, source);

L

A

R

G

E

strncpy(destination, source, sizeof(destination));

L

A

R

G

E

stricpy(destination, source, sizeof(destination));

L

A

R

G

\0

INTERVIEW QUESTION |§ i 17UsST

3| IDPUT THECIRCUIT |f| THAT ricndeen
HOW WOULD YOU | BOARD INABUCKET || sounbs LoTHR
DIAGNOSE A BUFFER 9| oF WATER AND LooK §] RIGHT. | 1TH YOUR
OVERFLOW PROBLEM? |2 FOR AIR BUBBLES. H INTERVIEW
g 5 QUESTION.

H §

§ 2

3 :

<] ®

41

F)

e QOur Definition:

The software accesses through an array a memory location
that is outside the boundaries of that array.

This definition is clearer than CWE-119: Improper Restriction of Operations within the Bounds of a Memory
Buffer: “The software performs operations on a memory buffer, but it can read from or write to a memory
location that is outside of the intended boundary of the buffer.”

v’ clarifies that access is through the same buffer to which the intended boundary pertains.
v’ accurately, precisely, and concisely describes violation of memory safety.

Related CWEs, SFP and ST
CWEs are CWE-119, CWE-120, CWE-121, CWE-122, CWE-123, CWE-124, CWE-125, CWE-126, CWE-127, CWE-786, CWE-787, CWE-788.

SFP cluster is SFP8 Faulty Buffer Access under Primary Cluster: Memory Access.
ST is the Buffer Overflow Semantic Template.

42

e Often referred to as a “buffer,” an array is a contiguously allocated set of objects,
called elements.
v Has a definite size — a definite number of elements are allocated to it.

v Software should not use array name to access anything outside boundary of allocated
elements.

v' Elements are all of same data type and accessed by integer offsets.

e If software can utilize array handle to access any memory other than allocated
objects, it falls into this class.

An array could be pictured as follows:

43

* Access: Read, Write.

The underlined attribute shows what eventually goes wrong.
The rest of the attributes are simply descriptive.

44

undary

 Access: Read, Write.

 Boundary — indicates which end of the array is violated:
v Below (before, under, or lower)
v Above (after, over, or upper).

o Synonyms for boundary are side or bound.

o Before, under or lower may be used instead of below.
o After, over or upper may be used instead of above.

o0 Outside indicates boundary is unknown or it doesn’t rr

45

 Access: Read, Write.
« Boundary: Below, Above.
* Location — what part of memo

the array is allocated in:

dENENRNNENRNEN

[HENENENRNRERED

v" Heap

v StaCk return to stringTold()
T [EVERARANARAN

v" BSS (uninitialized data)

v' Data (|n|t|a||zed) (TTTTTTTTTTTTT] return to getinvocation()

v

Code (text).

return to getOneElement()

e |t may matter since:
— violations in the stack may affect program execution flow
— while violations in the heap typically only affect data values.
e Other compilers and operating system may have other locations that are significant
— e.g. BSS, Data, Code (text). 46

agnitude

Access: Read, Write.

Boundary: Below, Above.

Location: Heap, Stack, BSS, Data, Code.

Magnitude — how far outside the boundary the violation extends:

v" Small (just barely outside — e.g. one to a few bytes)
v" Moderate (from 8 to dozens of bites)
v" Far (hundreds, thousands or more — e.g. 4000).

=1 1

These distinctions in the magnitude attribute are important because some violation detection techniques or
mitigation techniques, such as canaries or allocating a little extra space, are only useful if the magnitude is small.

47

ta Size

 Access: Read, Write.

« Boundary: Below, Above.

» Location: Heap, Stack, BSS, Data, Code.

* Magnitude: Small, Moderate, Far.

« Data Size — how much data is accessed beyond the boundary:

Little, Some, Huge.

Nla tijlonail Institute of

As in magnitude, these distinctions are important in some cases
— e.g. Heartbleed might not have been a severe problem if it just exfiltrated a little data. The
fact that it may exfiltrate a huge amount of data
greatly increases the chance that very important information will be leaked.

48

Xcursion

 Access: Read, Write.

« Boundary: Below, Above.

» Location: Heap, Stack, BSS, Data, Code.

« Magnitude: Small, Moderate, Far.

« Data Size: Little, Some, Huge.

« Excursion — one-by-one or arbitrary: B o
v" Continuous
v Discrete.

This indicates whether the access violation was preceded by consecutive access of elements starting within the array
(continuous) or just an access outside of the array (discrete). Typically string accesses or array copies handle a
continuous set of array elements, while a vagrant array index only reads or writes one element.

> All attributes can also be “either/any/don’t care/unknown”.

For instance, strict bounds checking is equally effective regardless of the location, magnitude, data size or excursion of
the violation. Keeping return addresses in a separate stack helps prevent problems occurring from write accesses when
the array location is the stack. 49

Causes

Input Not

2.

Incorrect Calculation
FRS

roperly Checke

Result Fault:

v Overflow

v Underflow

v Undefined

v Truncation
Operator:
Operand Error:
Types:

Off By One

. Incorrect
N Argumen

Data Exceeds Array

Array Too Small

Too Much Data

No NULL
Termination

|

Wrong Index /
ointer Out of Range

Incorrect
Conversio

es, and Consequences

Attributes

Access:

v Read

v Write
Boundary:
v’ Below

v’ Above
Location:

v" Heap

v’ Stack
Magnitude:
v' Small

v' Moderate
v’ Far
Data Size:

v Little

v’ Some

v" Huge
Excursion:
v Continuous
v" Discrete

Consequences

Altered Control Flow

Program Crash

ACI

Admin Server Access
omplete Host Takeove

onfidentiality/Authentication
Authorization/Integrity Los

Arbitrary Code
Execution

uuuuu

o Ty S S SO Uy S S A U ———

[PR S ——

« In C, Buffer Overflow may occur at:
v Use of [] operator with arrays in C
v" Use of unary * operator with arrays in C
v Use of string library functions,
such as strcpy () or strcat ().

51

Cryptography Classes in BF
(ENC, VRF, KMN)

52

* Encryption Bugs (ENC)
* Verification Bugs (VRF)
» Key Management Bugs (KMN)

53

e Broad, complex, and subtle area.

e |Incorporates many clearly separate cryptographic processes, such as:
v Encryption/ Decryption
v' Verification of data or source

v' Key management.

e Each cryptographic process
—> uses particular algorithms
(e.g. symmetric/ asymmetric encryption, MAC, digital-signature)
—> to achieve particular security service.
(e.g. confidentiality, integrity authentication, identity authentication, origin non-repudiation)

54

There are bugs if the software does not properly:
e Transform data into unintelligible form
v' Some transformations require keys — e.g. encryption and decryption
v" While others do not require keys — e.g. secret sharing.
e \erify:
v Authenticity — data integrity, data source identity, origin for non-repudiation,
content of secret sharing
v’ Correctness — for uses such as zero-knowledge proofs.
e Manage keys
e Perform other operations.

55

or Transfer

We use cryptographic store or transfer to illustrate the BF Cryptography Bugs Classes:
* Encryption Bugs (ENC)
* Verification Bugs (VRF)
+ Key Management Bugs (KMN)

Note: These classes may appear in many other situations such as:
» Self-sovereign identities
* Block ciphers
« Threshold cryptography.

We focus on transfer (or store) because it is:
v" Well known a
v" What most people think of when “cryptography” is mentioned.

56

c Store or Transfer

We define bugs in cryptographic store or transfer as:

The software does not properly encrypt/decrypt, verify, or manage keys
for data to be securely stored or transferred.

57

hic Store or Transfer Bugs
VRF, KMN)

key
[Generate/ Select Store
| Hash+RND| ENC

N
Distribute
DigSen / MAC

Source Use User

ENC, ATN

|

I |

[|

I I I

pbKeyy,, /ShKey I ENC : preyy;~\ shKey I

| I |

I | |

Asymmetric / Symmetri | | r_[Asymmetric / Synlmetric] |

| l » |

| ciphertext | '&%{Mﬁ |

| | I

3 I 5 |
plaintext I signed/hashed ciphertext plantest |
| |

I VRF | |

i | |

Hash I : ; | |

prey/ key i Sign | signed/hashed plaintext ! 5 Verify DbKey,, Hey |
|

DigSgn / MAC Hash+RND : : Hash+RND DigSen / MAC |

ENC | | AIN |

| | I

I |

ment Bugs (KMN)

e KMN is a class of bugs related to key management.
e Key management comprises:

v' Key generation

v' Key selection

v' Key storage

v Key retrieval and distribution

v' Determining and signaling when keys should be abandoned or replaced.
A particular protocol may use any or all of these operations.

59

ment Bugs (KMN)

e Key Management could be by:
v’ a third party certificate authority (CA) — distributes public keys in signed certificates
v' the source
v’ the user

Thus the Key Management area intersects the Source and User areas.

Key Management often uses a recursive round of encryption and decryption, and verification to
establish a shared secret key or session key before the actual plaintext is handled.

60

Bugs (ENC)

e ENC is a class of bugs related to encryption.
e Encryption comprises:

v Encryption by the source

v" Decryption by the user.

e Encryption/ decryption algorithms may be:

v' Symmetric — uses same key for both

v" Asymmetric — uses pairs of keys: one to encrypt, other to decrypt.
Public key cryptosystems are asymmetric.

The ciphertext may be sent directly to the user, and verification accompanies it separately.
The red line is a case where plaintext is signed or hashed and then encrypted.

61

ugs (VRF)

e VRF is a class of bugs related to verification.
e \Verification:

o0 Takes a key and either the plaintext or the ciphertext
signs or hashes it then passes the result to the user.

0 User uses the same key or the other member of the key pair to verify source.

62

e Symmetric encryption — one secretly shared key (shKey) is used:
v’ Source encrypts with shKey
v" User decrypts with shKey, too.

e Asymmetric encryption — pairs of mathematically related keys are used,
source pair: (pbKeysg,., prkeysg,.), user pair: (pbKey,,., and prkey,,):

v’ Source:
0 encrypts with pbKey,,,
0 signs with prKkeyg,,

v’ User:
o decrypts with prkey, .,
o verifies with pbKeysg,..

63

C)

e We define Encryption Bugs (ENC) as:

The software does not properly transform sensitive data (plaintext) into unintelligible form
(ciphertext) using cryptographic algorithm and key(s).

e We define also the Decryption Bugs as:

The software does not properly transform ciphertext into plaintext using cryptographic
algorithm and key(s).

Note that “transform” is for confidentiality.
ENC is related to KMN, Randomization (RND), and Information Exposure (IEX).

Related CWEs, SFPs and ST:
v CWEs: CWE-256, 257, 261, 311-318, 325, 326, 327, 329, 780.

v SFP clusters: SPF 17.1 Broken Cryptography and SFP 17.2 Weak Cryptography under Primary
Cluster: Cryptography.

64

Causes

@on of Encryption Algorithm

Improper Encryption Algorithm/ Step

Ry Broc S

Insecure Mode of Operation
Exposed Private/Secret Key

Attributes

Sensitive Data:

v’ Credentials

v’ System, State

v Cryptographic

v' Digital Documents
Data State:

v’ Stored

v' Transferred
Algorithm:

v’ Symmetric

v’ Asymmetric
Security Service:

v’ Confidentiality

v’ ~ Integrity

v’ ~ Identity

es, and Consequences

Consequences

IEX of
Sensitive Data

65

e Sensitive Data — This is secret (confidential) data.

v Credentials: Password, Token, Smart Card, Digital Certificate,
Biometrics (fingerprint, hand configuration, retina, iris, voice.)

v' System Data: Configurations, Logs, Web usage, etc.

v’ State Data

v Cryptographic Data: hashes, keys, and other keying material
v" Digital Documents.

e Data State — This reflects if data is in rest or use, or if data is in transit.

v Stored: data in rest or use from files (¢.g. ini, temp, configuration, log server, debug, cleanup, emall

attachment, login buffer, executable, backup, core dump, access control list, private data index),
directories (\Web root, FTF root, CVS repository), registry, cookies, source code & comments, GUI,
environmental variables.

v' Transferred: data in transit between processes or over a network.

66

e Algorithm —the key encryption scheme used to securely store/transfer sensitive data.

v' Symmetric (secret) key algorithms (e.g. Serpent, Blowfish)
use one shared key.

v" Asymmetric (public) key algorithms (e.g. Diffie-Hellman, RSA)
use two keys (public, private).

e Security Service(s) — that was failed by the encryption process
v" Confidentiality — the main security service provided by encryption.
v" ~Integrity, ~ldentity Authentication — in some specific modes of encryption.

- ENC is a high level class, so sites do not apply.

67

F)

e Our Definition:
The software does not properly sign data, check and prove source, or assure data is not
altered.

Note that “check” is for identity authentication, “prove” is for origin (signer) non-repudiation,
and “not altered” is for integrity authentication.

VREF is related to KMN, RND, ENC, Authentication (ATN), IEX.

Related CWEs, SFPs and ST:
v CWEs: CWE-295, 296, 347.
v SFP cluster: SFP 17.2 Weak Cryptography under Primary Cluster: Cryptography.

68

Causes

@iﬁcaﬁon of Verification Algorithm

Improper Verification Algorithm/ Step

RND>Inadequate/Predictable

Attributes

Verified Data:

v’ Secret

v" Public
Data State:

v’ Stored

v' Transferred
Algorithm:

v" Hash Function + RND

v’ MAC

v’ Digital Signature
Security Service:

v Integrity Authentication
v’ Identity Authentication
v Origin Non-Repudiation

es, and Consequences

Consequences

Unverified
Keying Material
Unverified/Wrongly Verified
Data/Identity/Origin

69

e Verified Data — This is the data that needs verification. It may be confidential or public.
— Secret (confidential) Data: cryptographic hashes, secret keys, or keying material.
— Public Data: signed contract, documents, or public keys.

e Data State — This reflects if data is in rest or use, or if data is in transit.

e Algorithm — Hash Function + RND, Message Authentication Code (MAC), Digital Signature.
— Hash functions are used for integrity authentication. They use RND.

— MAC are symmetric key algorithms (one secret key per source/user), used for integrity
authentication, identity authentication. It needs authentication code generation, source
signs data, user gets tag for key and data, and verifies data by tag and key.

— Digital Signature is an asymmetric key algorithm (two keys), used for integrity and identity
authentication, and origin (signer) non-repudiation. It needs key generation, signature
generation, and signature verification.

MAC and Digital Signature use KMN and recursively VRF.

70

e Security Service — This is the security service the verification process failed.
— Data Integrity Authentication — for data and keys
— ldentity Authentication — for source authentication
— Origin (Signer) Non-Repudiation — for source authentication.

- VREF is a high level class, so sites do not apply.

71

gs (KMN)

e Our Definition:
The software does not properly generate, store, distribute, use, or destroy cryptographic keys
and other keying material.

KMN is related to ENC, RND, VRF, IEX.

Related CWEs, SFPs and ST:
v" CWEs: CWE-321, 322, 323, 324.

v SFP clusters: SFP 17.2 Weak Cryptography under Primary Cluster: Cryptography and
SFP 4.13 Digital Certificate under Primary Cluster: Authentication .

72

Causes

Improper Algorithm/ Step

Missin
>, o> oS
Improper Offer/ Use of Weak Protocol

Attributes

Hardcoded Key
Wrong Key Selection
RND=>Inadequate/ Predictable

Cryptographic Data:

v’ Hashes

v" Keying Material

v' Digital Certificate, etc.
Data State:

v’ Stored

v’ Transferred
Algorithm:

v" Hash Function + RND

v’ MAC

v' Digital Signature, etc.
Operation:

v’ Generate/ Select

v’ Store

v" Distribute

v Use

v" Destroy

tes, and Consequences

Consequences

Weak Public Key

Weak Secret Key
Unverified Keying Material

IEX of Keying Material

IEX of
Private Key

73

ributes, and Consequences

Cryptographic Data — Hashes, Keying Material, Digital Certificate.
Data State — This reflects if data is in rest or use, or if data is in transit.
Algorithm — Hash Function + RND, MAC, Digital Signature.
Operation —This is the failed operation:Generate uses RND.

— Store — includes update and recover

— Distribute — includes key establishment, transport, agreement, wrapping, encapsulation,
derivation, confirmation, shared secret creation; uses ENC and KMN (reclusively)

— Use
— Destroy.

- KMN is a high level class, so sites do not apply.

74

3. Benefits of Using BF

75

F

BF provides a superior, unified approach that allows us to:
e Precisely and unambiguously express software bugs or vulnerabilities.
e Explain clearly applicability and utility of different software quality or assurance techniques or

approaches.

e More formally reason about assurance techniques or mitigation approaches that may work
for a fault with certain attributes (but not for the same fault with other attributes).

76

F

With BF practitioners and researchers can more accurately, precisely and clearly:

Describe problems in software.
Clearly document the classes of bugs that a tool does and does not report.
Explain what vulnerabilities the proposed techniques prevent.

Those concerned with software quality, reliability of programs and digital systems, or cybersecurity

—> will be able to make more rapid progress by more clearly labeling the results of errors in software.

Those responsible for designing, operating and maintaining computer complexes
- can communicate with more exactness about threats, attacks, patches and exposures.

77

BOF Examples

78

Explains Techniques

Canaries
> Extra memory above and below an array with unusual values, e.g., OXDEADBEEF.
> Useful with attributes:
- Write Access
- Small Magnitude.
Address Space Layout Randomization (ASLR)
> Allocate arrays randomly about memory.
> Useful with attributes:
- Heap Location
- Stack Location — limited.

Read-only pages
(others from BOF paper)

79

VE-2014-0160 (Heartble

Hum...

4 letters: BIRD.

O
=W

User Meg wants

?TE%WE“E? ser Meg wants these 500 letters: HAT.

(Source: hitp://xked.com/1354)

VE-2014-0160 (Heartbleec

BOF taxonomy:
Cause: Input Not Checked Properly leads to Data Exceeds Array (specifically Too Much Data)

Attributes:
Access: Read
Boundary: Above
Location: Heap
Data Size: Huge

Excursion: Continuous
Consequence: |IEX (if not had been cleared -)

key:14835038lsabe

NENNNNRRRRRNNNNNNERRRNNNEEEE

BF description: Input not checked properly leads to data exceeds array (specifically too much data),
where huge data is read from the heap in a continuous excursion above the array boundary, which may be
exploited for IEX (if not had been cleared)."

CVE-2014-0160 (Heartbleed): “The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before
1.0.1g do not properly handle Heartbeat Extension packets, which allows remote attackers to obtain
sensitive information from process memory via crafted packets that trigger a buffer over-read, as 81

Aamnnectratad hyv raadina nriviata lravie ralatad tn A1 hnath ~ and t1 lih ~ alra tha Haarthlaad hiin "

E-2014-0160 (Heartble:

key=148350381I1sabe

Sensitive
Info Uncleared Before
Release
: EERERRRRRRRRRRRRRRRRRREREERD
.
- o Exposure
/ Input Not\ '
\CrleCkefj Ero/peil/y Data Exceeds Array Access:
\ v'Read
\
\ |
Boundary:
Too Much Data
- v Above
) Location:
v'Heap
Magnitude:
v'Far
Data Size:
v'Huge
Excursion:
v'Continuous
82

ENC, VRF, KMN Examples

83

E-2002-1946

ENC taxonomy:
Cause: Weak Encryption Algorithm (one-to-one mapping)
Attributes:
Sensitive Data: Credentials (passwords)
Data State: Stored (in registry)
Algorithm: Symmetric (that allows obtaining shared key and decryption)
Security Service: Confidentiality

Consequence: |[EX of Sensitive Data (credentials)

BF description: Use of weak encryption algorithm (one-to-one mapping) allows obtaining the shared
symmetric key and decryption of stored (in registry) credentials (passwords), which is confidentiality failure
and |[EX of sensitive data (passwords).

CVE-2002-1946: “Videsh Sanchar Nigam Limited (VSNL) Integrated Dialer Software 1.2.000, when the
"Save Password" option is used, stores the password with a weak encryption scheme (one-to-one
mapping) in a registry key, which allows local users to obtain and decrypt the password.“ [1]

[1] The MITRE Corporation, CVE Common Vulnerabilities and Exposures, C\VE-2002-1946.

84

VE-2001-1585

VRF taxonomy:
Cause Missing Verification Step (challenge-response) in public key authentication
Attributes:
Verified Data: Any (Secret/ Public)
Data State: Transferred (over network)
Algorithm: Digital Signature (not using such allows private key not to be verified by public key)
Security Service: Identity Authentication

Consequence: IEX

BF description: Missing verification step (challenge-response) in public key authentication allows
private key for digital signature not to be verified by public key, which leads to identity authentication failure
and may be exploited for IEX.

CVE-2001-1585: “SSH protocol 2 (aka SSH-2) public key authentication in the development snapshot of
OpenSSH 2.3.1, available from 2001-01-18 through 2001-02-08, does not perform a challenge-response
step to ensure that the client has the proper private key, which allows remote attackers to bypass
authentication as other users by supplying a public key from that user's authorized keys file. [1]

[1] The MITRE Corporation, CVE Common Vulnerabilities and Exposures, CVE- 2001-1585. 85

REAK)
VE-2015-1637, CVE-2015-1067

FREAK — Factoring attack on RSA-ExportKeys

CVE-2015-0204: “The ssl3_get_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and
1.0.1 before 1.0.1k allows remote SSL servers to conduct RSA-to-EXPORT _RSA downgrade attacks and facilitate brute-
force decryption by offering a weak ephemeral RSA key in a noncompliant role, related to the "FREAK" issue. NOTE: the
scope of this CVE is only client code based on OpenSSL, not EXPORT_RSA issues associated with servers or other TLS
implementations.” [1]

CVE-2015-1637: “Schannel (aka Secure Channel) in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows
Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and
Windows RT Gold and 8.1 does not properly restrict TLS state transitions, which makes it easier for remote attackers to
conduct cipher-downgrade attacks to EXPORT_RSA ciphers via crafted TLS traffic, related to the "FREAK" issue, a
different vulnerability than CVE-2015-0204 and CVE-2015-1067." [2]

CVE-2015-1067: “Secure Transport in Apple iOS before 8.2, Apple OS X through 10.10.2, and Apple TV before 7.1 does
not properly restrict TLS state transitions, which makes it easier for remote attackers to conduct cipher-downgrade attacks
to EXPORT_RSA ciphers via crafted TLS traffic, related to the "FREAK" issue, a different vulnerability than CVE-2015-
0204 and CVE-2015-1637." [3]

[1] The MITRE Corporation, CVE--2015-0204, htips://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0204
[2] The MITRE Corporation, CVE--2015-1637, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1637.
[3] The MITRE Corporation, CVE--2015-1067, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1067, 86

AK

FREAK description using VRF taxonomy: An inner KMN leads to an inner ENC, which leads to an outer ENC
Inner KMN:
Cause: Improper Offer of Weak Protocol (Export RSA — offered from MITM-tricked server and accepted by client)
Attributes:
Cryptographic Data: Keying Material (pair of private and public keys)
Data State: Transferred (over network)
Algorithm: Export RSA (512-bits key generation based on prime numbers,
such that private key can be obtained from public key through factorization)
Operation: Generate
Consequence: |[EX Keying Material (private key)
Inner ENC:
Causes: KMN Fault leads to Exposed Private Key
Attributes:
Sensitive Data: Cryptographic (Pre-Master Secret)
Data State: Transferred (over network)
Algorithm: Asymmetric (RSA) (that allows decryption of Pre-Master Secret using exposed private key
and computation of Master Secret)
Security Service: Confidentiality
Consequence: |[EX of Sensitive Data (Master Secret)

87

K)

Inner KMN and inner ENC only set up the secret key. Outer ENC is the actual general data transfer.

Outer ENC:
Causes: KMN Fault leads to Exposed Secret Key (Master Secret)
Attributes:
Sensitive Data: Credentials (passwords, credit cards)
Data State: Transferred (over network)
Algorithm: Symmetric (key is known)
Security Service: Confidentiality
Consequence: |[EX of Sensitive Data (credentials)

88

EAK)

Interestingly in this example the consequence from the first bug (inner KMN) causes the second bug (inner
ENC), whose consequences cause the third bug (outer ENC).

Inner KMN is:

e A server bug — sending a weak key (that the client did not ask for) intended for KMN use by client
(encrypting Pre-Master Secret).

e And also a client bug — as the client accepted the offer of using the insecure method, and therefore the
server proceeded. The client could have refused that offer.

Inner ENC is:

e A client bug — using that weak key to encrypt the Pre-Master Secret, and then transmitting that weakly
encrypted Pre-Master Secret over a network that is not secure.

89

EAK) — Source Code

Client
#ifndef OPENSSL_NO_RSA
if (alg_k & SSL_kRSA) { if (alg_k & SSL_kRSA) {
if (ISSL_C 1S EXPORT(s->s3->tmp.new_cipher)) {
al=SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,SSL_R_UNEXPECTED_ME
SSAGE) ;
goto f _err;
¥
if ((rsa=RSA_new()) == NULL) { if ((rsa=RSA_new()) == NULL) {
SSLerr(SSL_F_SSL3 GET_KEY_EXCHANGE,ERR_R MALLOC_ SSLerr(SSL_F_SSL3 GET_KEY_EXCHANGE,ERR_R_MALLOC_FAILURE);
FAILURE) ;
If client ciphersuit is non-export then returned

Server by server RSA keys should be also non-export.
case SSL3_ST_SW_KEY_EXCH_B: case SSL3_ST_SW_KEY_EXCH_B:
alg_k = s->s3->tmp.new_cipher- alg_k = s->s3->tmp.new_cipher- Therefore, handshake that offers export RSA
>algorithm_mkey; >algorithm_mkey; key (512 bits, which is weak) should be
it ((s->options & SSL_OP_EPHEMERAL_RSA) abandoned by client.
#ifndef OPENSSL_NO_KRB5

&& '(alg_k & SSL_KKRB5) The buggy code includes a handshake that
#endifT) enables accepting a 512-bit RSA key.

S->s3->tmp.use_rsa_tmp=1;
else The fix is adding code that checks whether

s->s3->tmp.use_rsa_tmp=0; s->s3->tmp.use_rsa_tmp=0; client ciphersuit is non-export and for

abandoning the handshake if this is the case.

90

if (s—>s3->tmp.use_rsa_tmp if (

EAK) — Analysis

The following analysis is based on information in [1-7].
e The server offers a weak protocol (Export RSA) while the client requested strong protocol (RSA).

e Communication is encrypted by symmetric encryption. The key for that encryption (Master Secret) is created by both
client and server from a Pre-Master Secret and nonces sent by client and server. The Pre-Master Secret is sent
encrypted by RSA cryptosystem.

e The client requests RSA protocol, but man in the middle (MITM) intercepts and requests Export RSA that uses a 512
bit key. Factoring a 512 bit RSA key is feasible.

e Because of a bug, the client agrees to Export RSA.

MITM factors the public 512 bit public RSA key, uses this factoring to recover the private RSA key, and then uses that
private key to decrypt the Pre-Master Secret.

e Then it uses the Pre-Master Secret and the nonces to generate the Master Secret. The Master Secret enables MITM
to decrypt the encrypted communication from that point on.

Note: For Export RSA, a weaker RSA key-pair (512-bit) is required than required on the SSL certificate. If it was RSA, the client would
generate the Pre-Master Secret and encrypt it with server’s public key (min 1024-bit) from its SSL certificate.

[1] The MITRE Corporation, CVE--2015-0204, htips://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0204

[2] The MITRE Corporation, CVE--2015-1637, htips://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1637.

[3] The MITRE Corporation, CVE--2015-1067, htips://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1067.

[4] R. Heaton, The SSL FREAK vulnerability explained, http://robertheaton.com/2015/04/06/the-ss|-freak-vulnerability.

[5] Censys, The FREAK Attack. hitps://censys.io/blog/freak

[6] StackExchange, Protecting phone from the FREAK bug, htip:/android.stackexchange.com/questions/101929/protecting-phone-from-the-freak-bug/101966. 91
[7] GitHub, openssl, Only allow ephemeral RSA keys in export ciphersuites, hitps://github.com/openssl/openssl/commit/ce325c60c74b0fa78415872404b722e120e5cab0?diff=split.

4. More BF Classes

92

e Buffer Overflow (BOF)
e Injection (INJ), e.g.

v SQL injection
v OS injection.
Control of Interaction Frequency Bugs (CIF),e.g.
v Limit number of login attempts
v Only one vote per voter.
Encryption Bugs (ENC)
Verification Bugs (VRF)
Key Management Bugs (KMN)
Faulty Result (FRS)
Random Number Generation Bugs (RND)

Pseudo-Random Number Generation Bugs (PRN).

93

e What is Injection? (in programming, not in medicine ©)

HI, THIS 1S

YOUR SON'S SCHOOL.
WERE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY - /

X

R

DID YOU REALLY
NAME YOLR SON
Robert'); DROP
TABLE Students;-- 7

~OH.YES LTNE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

Source: xkcd

It
2U 0644" 0, 0); DROP DATABASE LAELSS

94

e QOur Definition:

Due to input with language-specific special elements, the software assembles a command
string that is parsed into an invalid construct.

In other words, the command string is interpreted to have unintended commands, elements or
other structures.

Related CWEs, SFPs and ST:

v" CWEs related to INJ are CWE-74, CWE-75, CWE-77, CWE-78, CWE-80, CWE-85, CWE-87, CWE-88, CWE-89, CWE-90, CWE-
93,CWE-94, CWE-243, CWE-564, CWE-619, CWE-643, CWE-652.

v' Related SFPs are SFP24 and SFP27 under Primary Cluster: Tainted Input, and SFP17 under Primary Cluster: Path Resolution.
v" The corresponding ST is the Injection Semantic Template.

95

Causes

y Input Not Checked Properly

/ Permissive Whitelist

ite/Black List Not Checked Properl

; Input Not Sanitized Properly .
p
/ Failure to Reject
Input Altogether -
Failure to Remove

\ Offending Character:

Incomplete Blacklist

/

Failure to “Escape”
Offending Characters

Attributes

Language:
v SOL, Shell
v’ regex, XML/Xscript, HTML
v' PHP, CGI
Special Element:
v" Query Elements
v' Header Separators
v' Scripting Elements
v’ Format Parameters
v' Path Traversals
v’ Wildcards
v’ Metacharacters
Entry Point:
v" Data Entry Field
v" Markup Tag Argument
v' Function Parameter
v Program Argument
Invalid Construct:
v" Database Query
v' Command
v" Regular Expression
v Markup
v’ Script

s, and Consequences

Consequences

P e e

I T R L I

Mask Legitimate
Commands/Information

Incorrect Results

omputer Worms
Propagation

Admin Server Access
omplete Host Takeove
“onfidentiality/Authenticatio
Authorization/Integrity Los

Denial Of
Service

Arbitrary Code
Execution

96

- Language — in which the command string is interpreted:
SQL, Bash, regex, XML/Xpath, PHP, CGlI, etc.

- Special Element - could be assembled with other elements to form malicious structures such as
queries, scripts and commands:

Query Elements: strings delimiters ‘ or “ or words such as ‘and’ or ‘or’.

Header Separators: carriage return/line feed.

Scripting Elements: < or > or &.

Format Parameters: such as %c or %n.

Path Traversals Element: .. or\.

Metacharacters: back tick () or $ or &.

- Entry Point — where the input came from:
Data Entry Field, Scripting Tag, Markup Tag, Function Call Parameter, Procedure Call Argument.

- Invalid Construct — what eventually is wrong:
Database Query, Command, Regular Expression, Markup, Script, etc.
(correspond to the note after the definition: "the command string is interpreted to have unintended
commands, elements or other structures".)

D N NI N NI N

97

n Frequency (CIF)

e Our Definition:
The software does not properly limit the number of repeating interactions per specified unit.

E.g. failed logins per day, one vote per voter per election (more for certain races!), maximum
number of books checked out at once, etc. Interactions in software could be per event or per
user.

This class shows that we must acknowledge outside or local “policies”.

e Related CWEs, SFPs and ST:
v' CWEs related to CIF are CWE-799, CWE-307, CWE-837.

v The related SFP cluster is SFP34 Unrestricted Authentication under the Primary Cluster:
Authentication.

98

s, and Consequences

Causes Attributes Consequences
Interaction:
5 77 Gyl P i : :
4 Number of Interactions g Authentication attempt 13 e Lolgw Wrong Physmal@
¢ Not Checked Properly Vote Compromise
/ v’ Book System Compromise
ailure to Recognize ‘; Chef:kout Call-Number Exhaustion
\ Repeated (Group of) Register ./ Denial Of
\ Interactions ; Service

Resource Exhaustion

P ettt

L4

- v’ Initiate
Failure to
. - % Number:
\y v’ Single, Unique

v Specified Number (> 1)

Information Arbitrary Code

Unit: ‘ xposure/Change/Los Execution
A v’ Time
Frequency of Interactions v’ Event Admin Server Access
Not Checked Properly v User omplete Host Takeove

. —~ Actor: Account Access
Failure to Properly Limit VAT Rer
N

v' Part of Program Logic

Failure to Limit v Automated Process :

o —————

o e] o i il

99

e Interaction — to be controlled:
— Authentication Attempt
— Vote — related to election, census, survey, referendum and ballot
— Book — tickets, hotel rooms or rental cars.
— Checkout — of library books, hotel rooms or rental cars.
— Register — computer games
— Initiate — message exchange.

e Number — maximum occurrences allowed:

— Single, Unique; Specified Number (> 1).
e Unit — per which the number of occurrences is controlled.

— Time Interval — in seconds, in days, etc.

— Event — election, authentication, on-line transaction to move funds, etc.
e Actor — who/what is performing the repeating interactions:

— User — authenticated user, attacker.

— Part of program logic — message exchange.

— Automated process — virus, bot.

100

e QOur Definition:

The software produces a faulty result due to conversions between primitive types, range

violations, or domain violation.

The terms “range violation” and “domain violation” include overflow, underflow, wrap around, round off, divide by zero, and negative
shift. Overflow is when the combined value of the two operands exceeds the range of the typed operator [1].

Operations on pointers (memory addresses) are not FRS [2]. Use of wrong typed operation, e.g. integer division instead of floating point
division, is WOP, not FRS.

Floating point overflow and underflow, conversion between floating point types, and conversion between floating point and integer types
are FRS. Numerical analysis errors, such as loss of precision, failure to converge, and conditioning problems, are not FRS.

The model is that an operation causes (implicit) conversion of its operands’ values, then the operation is performed. How does argument
passing and the C cast fit this model? Argument passing can be seen as an implicit conversion then a null operation (or, equivalently, an
identity operation is performed). The C cast can be seen as explicit conversion then null.

Related CWEs, SFPs and SEI/CERT Rules and Recommendations:

CWEs related to FRS are CWE-128, CWE-136, CWE-189, CWE-190, CWE-191, CWE-192, CWE-194, CWE-195, CWE-196, CWE-197, CWE-369, CWE-681,
CWE-682, CWE-704.

Related SFP secondary cluster is Glitch in Computation (CWE-998).

Related SEI/CERT Rules and Recommendations are Rule 04 (C), (aka CWE-738), INT30-C, INT31-C, INT32-C, INT33-C, INT34-C, INT35-C, INT36-C; Rule 5
(C) (aka CWE-739), FLP03-C, FLP32-C, FLP34-C, FLP36-C; Rule 07 (C) (aka CWE-741), STR34-C, STR37-C; Rec. 04 (C) INTO1-C, INT02-C, INT04-C,
INTO5-C, INTO7-C, INT08-C, INT10-C, INT12-C, INT13-C, INT14-C, INT15-C, INT16-C, INT18-C; Rec. 08 (C) (aka CWE-742), MEMO7-C; Rule 03 (C++) (aka
CWE-872), INT50-CPP; Rule 03 (Java) (aka CWE-848), NUMO0O0-J, NUMO01-J, NUM02-J, NUM03-J, NUMO04-J, NUMO08-J, NUM12-J, NUM13-J, NUM14-J101

s Bugs (RND, PRN

Entropy Source

Healthifllest—c=ccre~ceerecmrn T
S rGednies sagE . RND (nondeterministic)
. random numbers
¥ (full entropy)

Noise

Source
’ Input
o Collecting
SNESELBESHIRNT
[0 WA

Entropy Pool(s)

Hash
BC

RND seed

. Ppseudo-random
= numbers

non-RND
seed

102

RND)

e The software generated output does not satisfy all use-specific true-randomness
requirements.

Note that the output sequence is of random numbers, where values are obtained from one or
more sources of entropy.

e Related CWEs, SFPs and ST:

v" CWEs related to RND are CWE-330, 331, 332, 333, 334, 337, 339, 340, 341, 342, 343.

v" The related SFP cluster is SFP Primary Cluster: Predictability, which is CWE-905 with members
CWE 330-344.

103

Causes Attributes Consequences

Function: Small Space
- . > v Quality Checking »
adequate Entro ource v = i
q (24 De-Skewing Inadequate Input to PRNG

v" Collecting, Mixing
v" OQutput, (Re)Seeding

Program Crash/Block

Used For:
Incorrect Entropy Assessment v Seeding

v" Generation
Randomness Requirement:
v" Sufficient Entropy
v" Sufficient Space Size VRF
v Non-Inferable KMN

Improper Function

104

s Bugs (PRN)

e Our Definition:
The software generated output does not satisfy all use-specific pseudo-randomness

requirements.

Note that the output sequence is of random numbers from PRNG.

e Related CWEs, SFPs and ST:
v" CWEs related to PRN are CWE-330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343.

v' The related SFP cluster is SFP Primary Cluster: Predictability, which is CWE-905 with members
CWE 330-344 [5].

105

Causes

Inadequate Input to PRNG

Improper PRNG Algorithm

Attributes

Used For:
v' ASLR
v Generation
v Initialization
v Input
Pseudo-Randomness Requirement:
v" Unpredictability/Indistinguishability
v" Prediction/Backtracking Resistance
v Sufficient Space Size
v' Use Specific Statistical Tests

es, and Consequences

Consequences

Program Crash/Block

[EX

106

5. Future Work

107

e One of our next steps is to explain more bugs using the developed BF classes.
e \We also need to explore the use of ENC, VRF, and KMN in contexts other than cryptographic
store and transfer. This will show where BF structures need refinements.
e Another step is to develop other BF classes. We are currently working on:
v Authentication Bugs (ATN), Authorization Bugs (AUT)

v" Information Exposure (IEX)
v" Memory Allocation Bugs (MAL) — memory allocation faults (use after free, multiple free, failure to free)

v Concurrency Bugs (CON)

+ for Ockham needs, but may become BF classes:
Initialization Failure (INI)
Wrong Operation (WOP)
NULL or Incorrect Pointer Dereference (PTR)
Incorrect Arguments (ARG)

- Our goal is for BF to become software developers’ and testers’ “Best Friend.” 108 108

https://samate.nist.gov/BF/

109

