머신 러닝(Machine Learning)이란?

URL 복사

머신 러닝이란 명시적으로 프로그래밍하지 않고도 패턴을 찾고, 예측하고, 경험을 통해 학습하도록 컴퓨터를 훈련하는 기술입니다.

Red Hat의 AI 살펴보기

머신 러닝(ML)은 알고리즘을 사용하여 데이터 세트 내에서 패턴을 식별하고 예측하는 인공지능(AI)의 하위 범주입니다. 이 데이터는 숫자, 텍스트 또는 사진으로 구성될 수 있습니다. 이상적인 조건에서 인간은 직접 데이터를 해석할 때보다 머신 러닝을 활용할 때 더 빠르고 정확하게 데이터를 해석할 수 있습니다.

조직에 ML 사례 적용하기

Red Hat 리소스

인공지능은 인간이 머신 내에서 인간과 같은 지능 감각을 인위적으로 생성할 때 발생합니다. 머신 러닝의 관점에서 인공지능은 인식, 학습, 문제 해결과 같이 인간이 자연적으로 가지고 있는 특정 인지 기능을 모방하도록 머신을 프로그래밍하는 것을 의미합니다. 

머신이 인간처럼 생각하도록 하려면 어떻게 해야 할까요? 자체 예측 모델을 생성하도록 머신을 훈련해야 합니다. 이 예측 모델은 머신이 데이터를 분석하고 궁극적으로 "학습"하는 머신이 되는 수단 역할을 합니다. 이 프로세스를 시작하려면 컴퓨터에 데이터를 입력하고 머신에 데이터 처리 방법을 지시할 학습 모델을 선택해야 합니다. 

머신 러닝 모델은 데이터를 사용하여 궁극적으로 다음 세 가지 기능을 제공할 수 있습니다.

  • 발생한 이벤트 설명
  • 발생할 이벤트 예측
  • 다음에 취해야 할 조치에 대한 제안


머신을 훈련하기 위해 선택한 학습 모델은 태스크의 복잡성과 원하는 결과에 따라 다릅니다. 머신 러닝은 일반적으로 다음 세 가지 학습 방식으로 분류됩니다.

지도 학습 모델은 레이블이 지정된 데이터 세트로 훈련합니다. 이 모델은 이미지 인식과 같은 태스크에 사용됩니다.

비지도 학습 모델은 레이블이 지정되지 않은 데이터를 살펴보고 공통점, 패턴, 추세를 찾습니다. 고객 세분화, 추천 시스템, 일반 데이터 탐색과 같은 태스크에 사용됩니다.

강화 학습 모델은 기존 보상 시스템 내에서 시행 착오 프로세스를 사용하여 훈련합니다. 이 학습 방식은 작업이 승패로 이어지는 게임을 하도록 컴퓨터를 훈련하는 것과 같은 일에 사용됩니다. 

컴퓨터가 (학습 모델과 훈련 데이터를 통해) 사용자가 원하는 데이터 해석 방식에 익숙해지면 새로운 데이터가 제시될 때 예측하고 태스크를 수행할 수 있습니다. 컴퓨터는 연속적인 데이터 스트림을 통해 학습하면서 점차 예측의 정확도를 높이고 인간보다 더 빠르고 정확하게 태스크를 수행할 수 있게 됩니다.

AI/ML 워크로드를 위한 하이브리드 클라우드 플랫폼 구축

머신 러닝 및 인공지능은 사용자 경험을 향상하고, 고객 행동을 예측하고, 시스템을 모니터링하여 사기를 탐지하고, 나아가 의료진을 도와 생명을 위협하는 상태를 감지할 수 있습니다. 많은 사람들이 매일 머신 러닝과 상호 작용하며 그 혜택을 누리고 있습니다. 다음은 몇 가지 일반적인 예입니다.

  • 좋아하는 스트리밍 서비스에 대한 추천 알고리즘
  • 자동 전화 상담 및 챗봇
  • 타겟팅 광고
  • 금융 기관의 자동화된 견적

현재 많은 AI 툴을 구동하는 생성형 AI는는 대량의 데이터를 분석하고 해석하기 위한 머신 러닝 기술인 딥러닝으로 구현되었습니다. 대규모 언어 모델(LLM)은 생성형 AI의 하위 집합으로, 전례 없는 규모로 인간의 언어를 이해하고 생성하는 역량을 입증함으로써 머신 러닝의 중요한 애플리케이션을 대표하고 있습니다. 

머신 러닝은 많은 기업에서 사용할 것으로 예상되는 기능이 되고 있으며, 혁신적인 AI/ML 활용 사례는 의료, 금융 서비스, 통신, 정부 및 기타 산업 전반에 걸쳐 나타나고 있습니다.

AI/ML 활용 사례 살펴보기

Red Hat은 팀이 투명성과 제어 권한을 가지고 AI 애플리케이션과 머신 러닝(ML) 모델을 구축하고 배포할 수 있는 공통 기반을 제공합니다. 

Red Hat® OpenShift® AI는 조직의 자체 데이터로 고유의 활용 사례를 지원하는 AI 모델을 훈련하고 프롬프트 튜닝(prompt-tuning)과 미세 조정을 수행하여 제공할 수 있는 플랫폼입니다.

대규모로 AI를 배포하는 경우에는 주요 하드웨어 가속기에 대한 액세스 권한을 갖춘 Red Hat OpenShift가 AI 워크로드에 적합한 확장 가능한 애플리케이션 플랫폼을 제공합니다.

또한 Red Hat은 자체 Red Hat OpenShift AI 툴을 사용하여 IBM Watson Assistant가 통합된 Red Hat Ansible® Lightspeed를 시작으로 다른 오픈소스 소프트웨어의 유틸리티를 개선하고 있습니다. Ansible Lightspeed는 개발자가 Ansible 콘텐츠를 더 효율적으로 생성할 수 있게 해주며, 사용자가 입력한 간단한 내용을 읽은 후 IBM watsonx 파운데이션 모델과 상호 작용하여 자동화 태스크를 위한 코드 권장 사항을 생성하고 이를 사용하여 Ansible Playbook을 작성합니다.

또한 Red Hat의 파트너 통합 제품은 오픈소스 플랫폼과 연동되도록 구축한 신뢰할 수 있는 AI 툴의 에코시스템을 활용할 수 있는 기회를 제시합니다.

OpenShift AI에 대해 자세히 알아보기
허브

레드햇 공식 블로그

레드햇 공식 블로그에서 고객, 파트너, 커뮤니티 에코시스템 등 현재 화제가 되는 최신 정보를 살펴 보세요.

모든 Red Hat 제품 체험판

무료 제품 체험판을 통해 핸즈온 경험을 얻고, 자격증 시험에 대비하거나 해당 제품이 조직에 적합한지 평가할 수 있습니다.

추가 자료

예측 AI와 생성형 AI 비교

생성 AI와 예측 AI는 차이점과 활용 사례가 많습니다. AI가 진화하는 시대에 이 두 유형을 제대로 구분하면 각각의 기능을 명확히 파악하는 데 도움이 됩니다.

에이전틱 AI란?

에이전틱 AI는 인간 개입을 최소화하는 방식으로 데이터 및 툴과 상호작용하도록 설계된 소프트웨어 시스템입니다.

Granite 모델이란?

Granite는 IBM이 엔터프라이즈 애플리케이션용으로 만든 LLM 시리즈입니다. Granite 파운데이션 모델은 언어 및 코드와 관련된 생성 AI 활용 사례를 지원할 수 있습니다.

AI/ML 리소스