
Toward Automated Detection of
Logic Vulnerabilities in Web Applications

Viktoria Felmetsger Ludovico Cavedon Christopher Kruegel Giovanni Vigna
[rusvika,cavedon,chris,vigna]@cs.ucsb.edu

Computer Security Group
Department of Computer Science

University of California, Santa Barbara

Abstract

Web applications are the most common way to make ser-
vices and data available on the Internet. Unfortunately,
with the increase in the number and complexity of these
applications, there has also been an increase in the num-
ber and complexity of vulnerabilities. Current techniques
to identify security problems in web applications have
mostly focused on input validation flaws, such as cross-
site scripting and SQL injection, with much less attention
devoted to application logic vulnerabilities.

Application logic vulnerabilities are an important class
of defects that are the result of faulty application logic.
These vulnerabilities are specific to the functionality of
particular web applications, and, thus, they are extremely
difficult to characterize and identify. In this paper, we
propose a first step toward the automated detection of
application logic vulnerabilities. To this end, we first use
dynamic analysis and observe the normal operation of a
web application to infer a simple set of behavioral spe-
cifications. Then, leveraging the knowledge about the
typical execution paradigm of web applications, we filter
the learned specifications to reduce false positives, and
we use model checking over symbolic input to identify
program paths that are likely to violate these specifica-
tions under specific conditions, indicating the presence
of a certain type of web application logic flaws. We de-
veloped a tool, called Waler, based on our ideas, and
we applied it to a number of web applications, finding
previously-unknown logic vulnerabilities.

1 Introduction

Web applications have become the most common means
to provide services on the Internet. They are used
for mission-critical tasks and frequently handle sensi-
tive user data. Unfortunately, web applications are often
implemented by developers with limited security skills,
who often have to deal with time-to-market pressure and

financial constraints. As a result, the number of web ap-
plication vulnerabilities has increased sharply. This is re-
flected in the Symantec Global Internet Security Threat
Report, which was published in April 2009 [12]. The re-
port states that, in 2008, web vulnerabilities accounted
for 63% of the total number of vulnerabilities reported.

Most recent research on vulnerability analysis for web
applications has focused on the identification and miti-
gation of input validation flaws. This class of vulnera-
bilities is characterized by the fact that a web application
uses external input as part of a sensitive operation with-
out first checking or sanitizing it properly. Prominent
examples of input validation flaws are cross-site script-
ing (XSS) [20] and SQL injection vulnerabilities [3, 32].
With XSS, an application sends to a client output that is
not sufficiently checked. This allows an attacker to in-
ject malicious JavaScript code into the output, which is
then executed on the client’s browser. In the case of SQL
injection, an attacker provides malicious input that alters
the intended meaning of a database query.

One reason for the prior focus on input validation vul-
nerabilities is that it is possible to provide a concise and
general specification that captures the essential charac-
teristics of these vulnerabilities. That is, given a pro-
gramming environment, it is possible to specify a set of
functions that read inputs (called sources), a set of func-
tions that represent security-sensitive operations (called
sinks), and a set of functions that check data for mali-
cious content. Then, various static and dynamic anal-
ysis techniques can be used to ensure that there are no
unchecked data flows from sources to sinks. Since the
specification of input validation flaws is independent of
the application logic, once a detection system is avail-
able, it can be used to find bugs in many applications.

While it is important to identify and correct input vali-
dation flaws, they represent only a subset of the spectrum
of (web application) vulnerabilities. In this paper, we ex-
plore another type of application flaws. In particular, we
look at vulnerabilities that result from errors in the logic

of a web application. Such errors are typically specific
to a particular web application, and might be domain-
specific. For example, consider an online store web ap-
plication that allows users to use coupons to obtain a dis-
count on certain items. In principle, a coupon can be
used only once, but an error in the implementation of the
application allows an attacker to apply a coupon an arbi-
trary number of times, reducing the price to zero.

So far, web application logic flaws have received little
attention, and their treatment is limited to informal dis-
cussions (a well-known example is the white paper by J.
Grossman [14]). This is due to the fact that logic vulnera-
bilities are specific to the intended functionality of a web
application. Therefore, it is difficult (if not impossible)
to define a general specification that allows for the dis-
covery of logic vulnerabilities in different applications.

One possible approach would be to leverage an appli-
cation’s requirement specification and design documents
to identify parts of the implementation that do not respect
the intended behavior of the application. Unfortunately,
these documents are almost never available in the case of
web applications. Therefore, other means to characterize
the expected behavior of web application must be found
for detection of application logic flaws.

In this paper, we take a first step toward the automated
detection of application logic vulnerabilities. Our ap-
proach operates in two steps. In the first step, we infer
specifications that (partially) capture a web application’s
logic. These specifications are in the form of likely in-
variants, which are derived by analyzing the dynamic ex-
ecution traces of the web application during normal oper-
ation. The intuition is that the observed, normal behavior
allows one to model properties that are likely intended by
the programmer. This step is necessary to automatically
obtain specifications that reflect the business logic of a
particular web application. In the second step, we ana-
lyze the inferred specifications with respect to the web
application’s code and identify violations.

The current implementation of our approach is based
on two well-known analysis techniques, namely, dy-
namic execution to extract (likely) program invariants
and model checking to identify specification violations.
However, to the best of our knowledge, the way in which
we combine these two techniques is novel, has never
been applied to web applications, and has not been lever-
aged to detect application logic flaws. Moreover, we had
to significantly extend the existing techniques to capture
specific characteristics of web applications and to scale
them to real-world applications as outlined below.

In the first step of our analysis, we used a well-known
dynamic analysis tool [9, 11] to infer program specifica-
tions in the form of likely invariants. We extended the
existing general technique to be more targeted to the ex-
ecution of web applications. In particular, we addressed

two main shortcomings of the general approach: the fact
that many invariants that relate to important concepts of
web applications were not identified (e.g., invariants re-
lated to objects that are part of the user session) and the
fact that many spurious invariants were generated as a re-
sult of the limited coverage of the dynamic analysis step
or because of artifacts in the analyzed inputs.

To deal with spurious invariants, we developed two
novel techniques to identify which derived invariants re-
flect real (or “true”) program specifications. The first
one uses the presence of explicit program checks, in-
volving the variable(s) constrained by an invariant, as a
clue that the invariant is indeed relevant to the behav-
ior of the web application. The second one is based on
the idea that certain types of invariants are intrinsically
more likely to reflect the intent of the programmer. In
particular, we focus on invariants that relate external in-
puts to the contents of user sessions and the back-end
database. The use of these techniques to filter the derived
invariants allows for a more effective extraction of speci-
fication of a web application’s behavior, when compared
to previously-proposed approaches that accept all gener-
ated likely invariants as correctly reflecting the behavior
of a program.

In the second step of the analysis, we use model check-
ing over symbolic input to analyze the inferred specifica-
tions with respect to the web application’s code and to
identify which real invariants can be violated. We had to
extend existing model checking tools with new mecha-
nisms to take into account the unique characteristics of
web applications. These characteristics include the fact
that web applications are composed of modules that can
be invoked in any order and that the state of the web
application must also take into account the contents of
back-end databases and other session-related storage fa-
cilities.

By following the two steps outlined above, it is possi-
ble to automatically detect a certain subclass of applica-
tion logic flaws, in which an application has inconsistent
behavior with respect to security-sensitive functionality.
Note that our approach is neither sound nor complete,
and, therefore, it is prone to both false positives and false
negatives. However, we implemented our approach in
a prototype tool, called Waler, that is able to automati-
cally identify logic flaws in web applications based on
Java servlets. We applied our tool to several real-world
web applications and to a number of student projects, and
we were able to identify many previously-unknown web
application logic flaws. Therefore, even though our tech-
nique cannot detect all possible logic flaws and our tool
is currently limited to servlet-based web applications, we
believe that this is a promising first step towards the au-
tomated identification of logic flaws in web applications.

2

In summary, this paper makes the following contribu-
tions:

• We extend existing dynamic analysis techniques to
derive program invariants for a class of web applica-
tions, taking into account their particular execution
paradigm.

• We identify novel techniques for the identification
of invariants that are “real” with high probability
and likely associated with the security-relevant be-
havior of a web application, pruning a large number
of spurious invariants.

• We extend existing model checking techniques to
take into account the characteristics of web appli-
cations. Using this approach, we are able to iden-
tify the occurrence of two classes of web applica-
tion logic flaws.

• We implemented our ideas in a tool, called Waler,
and we used it to analyze a number of servlet-based
web applications, identifying previously-unknown
application logic flaws.

2 Web Application Logic Vulnerabilities

Web application vulnerabilities can be divided into two
main categories, depending on how a vulnerability can be
detected: (1) vulnerabilities that have common character-
istics across different applications and (2) vulnerabilities
that are application-specific. Well-known vulnerabilities
such as XSS and SQL injection belong to the first cate-
gory. These two vulnerabilities are characterized by the
fact that a web application uses external input as part of a
sensitive operation without first checking or sanitizing it.
Vulnerabilities of the second type (such as, for example,
failures of the application to check for proper user autho-
rization or for the correct prices of the items in a shop-
ping cart) require some knowledge about the application
logic in order to be characterized and identified. In this
paper, we focus on this second type of vulnerabilities,
and we call them web application logic vulnerabilities.

To detect web application logic vulnerabilities auto-
matically, one needs to provide the detection tool with a
specification of the application’s intended behavior. Un-
fortunately, these specifications, whether formal or infor-
mal, are rarely available. Therefore, in this work, we pro-
pose an automated way to detect application logic vul-
nerabilities that do not require the specification of the
web application behavior to be available. Our intuition is
that often the application code contains “clues” about the
behavior that the developer intended to enforce. These
“clues” are expressed in the form of constraints on the
values of variables and on the order of the operations per-
formed by the application.

There are many ways in which constraints can be im-
plemented in an application. In this work, we focus on
two concrete types of constraints. The first (and most in-
tuitive) way to encode application-specific constraints is
in the form of program checks (i.e., if -statements). The
presence of such a check in the program before certain
data or functionality is accessed often represents a “clue”
that either the range of the allowed input should be lim-
ited or that an access to an item is limited. The absence of
a similar check on an alternate program path to the same
program point might represent a vulnerability. For ex-
ample, vulnerabilities like authentication bypass, where
an attacker is able to invoke a privileged operation with-
out having to provide the necessary credentials, could be
detected using this approach.

The second type of constraints, which often exist in
web applications, is the implicit correlation between the
data stored in back-end databases and the data stored in
user sessions. More specifically, in web applications,
databases are often used to store persistent data, and user
sessions are used to store the most accessed parts of this
data (such as user credentials). Thus, there often exist
implicit constraints on what is currently stored in the user
session when a database query is issued. A “clue,” in
this case, is an explicit relation between session data and
database data. Certain application logic vulnerabilities,
like unauthorized editing of a post belonging to another
user, can be detected if a path where these relations are
violated is found. More detailed examples of this type of
vulnerabilities will be provided in Section 4.3.2.

3 Detection Approach

Based on the discussions in the previous section, it is
clear that an analysis tool that aims to detect web appli-
cation logic vulnerabilities requires a specification of ex-
pected behavior of the program that should be checked.
If such specifications are available (e.g., in the form of
formal specifications or unit testing procedures), they can
be leveraged to validate the behavior of the application’s
implementation. However, in many cases there is no spe-
cification of the expected behavior of a web application.
In these cases, we need a way to derive it in an automated
fashion.

A number of techniques has been proposed by vari-
ous researchers to derive program specification automat-
ically. However, regardless of the approach used, none
of them can derive a complete specification without hu-
man feedback. To overcome this problem, we propose to
use one of the existing dynamic techniques to derive par-
tial program specifications and use an additional analysis
step to refine the results and find vulnerabilities.

In particular, we observe that web applications are typ-
ically exercised by users in a way that is consistent with

3

the intentions of the developers. More specifically, users
usually browse the application by following the provided
links and filling out forms with expected input. These
program paths are usually well-tested for normal input.
As a result, when monitoring a web application whose
“regular” functionality is exercised, it is possible to infer
interesting relationships between variables, constraints
on inputs and outputs, and the order in which the applica-
tion’s components are invoked. This information can be
used to extract specifications that partially characterize
the intended behavior of the web application.

As a result, in our approach, we use an initial dynamic
step where we monitor the execution of a web applica-
tion when it operates on a number of normal inputs. In
this step, it is important to exercise the application func-
tionality in a way that is consistent with the intentions of
the developer, i.e., by following the provided links and
submitting reasonable input. Note that the information
about a web application’s “normal” behavior cannot be
gathered using automatic-crawling tools, as these tools
usually do not interact with an application following the
workflow intended by the developer or using inputs that
reflect normal operational patterns.

In this work, as the result of the dynamic analysis
step, we infer partial program specifications in the form
of likely invariants. These invariants capture constraints
on the values of variables at different program points,
as well as relationships between variables. For exam-
ple, we might infer that the Boolean variable isAdmin
must be true whenever a certain (privileged) function
is invoked. As another example, the analysis might de-
termine that the variable freeShipping is true only
when the number of items in the shopping cart is greater
than 5. We believe that these invariants provide a good
base for the detection of logic flaws because they often
capture application-specific constraints that the program-
mer had in mind when developing the web application.
Of course, it is unlikely that the set of inferred invari-
ants represents a complete (or precise) specification of a
web application’s functionality. Nevertheless, it provides
a good, initial step to obtain a model of the intended be-
havior of a program and can be used to guide further,
more elaborate program analysis.

As the second step of the analysis, we use model
checking with symbolic inputs to check the inferred spe-
cifications. The goal is to find additional evidence in
the code about which invariants are likely to be part of
the real program specification and then to identify paths
where these invariants are violated.

A naı̈ve approach would assume that all the generated
invariants represent real invariants (specifications) for an
application. Unfortunately, this straightforward solution
leads to an unacceptably large number of false positives.
The reason is the incompleteness of the dynamic analysis

step. In particular, the limited variety of the input data
frequently leads to the discovery of spurious invariants
that do not reflect the intended program specification. To
address this problem, we propose two novel techniques
to distinguish between spurious and real program invari-
ants.

The first technique aims to distinguish between a spu-
rious and a true invariant by determining whether a pro-
gram contains a check that involves the variables con-
tained in the invariant on a path leading to the pro-
gram point for which this likely invariant was gener-
ated. A check on a variable is a control flow operation
that constrains this variable on a path. For example, the
if -statement if (isAdmin == true) {...} repre-
sents a check on the variable isAdmin. Intuitively, we
assume that a certain invariant was intended by a pro-
grammer if there is at least one program path that con-
tains checks that enforce the correctness of this invariant
(i.e., the checks imply that the invariant holds). We call
such invariants supported invariants. When we find a
supported invariant that can be violated on an alterna-
tive program path leading to the same program point, we
report this as a potential application logic vulnerability.
When a likely invariant can be violated, but there are no
checks in the program that are related to this invariant,
then we consider it to be spurious.

The second technique identifies a certain type of in-
variant that we always consider to reflect actual program
specifications. These invariants represent equality rela-
tions between web application state variables (in partic-
ular, variables storing the content of user sessions and
database contents). Relationships of that kind often re-
flect important internal consistency constraints in a web
application and are rarely coincidental. A vulnerability
is reported when the analysis determines that the equal-
ity relation is not enforced on all paths.

The vulnerability detection process and our techniques
to distinguish between spurious and real invariants are
discussed in more detail in Section 4.3.

4 Implementation

We chose to implement the proposed approach for
servlet-based web applications written in Java. Servlets
are frequently used for implementing web applications.
In addition, there are a number of existing tools available
for Java that can be used for program analysis. In this
section, we describe the tools that we used, the exten-
sions that we developed, and the challenges that we had
to overcome to make them work together.

We first briefly introduce servlets [24]. A typi-
cal servlet-based web application consists of servlets,
static documents, client-side code, and descriptive meta-
information. A servlet is a Java-based web component

4

package myapp;
public class User {
private String username;
private String role;

}
public class Order {
private int tax;
private int total;
private Cart cart;

}
public class Cart {
private List products;
private int total;

}

Class Definitions

_jspService(javax.servlet.http.HttpServletRequest req,
javax.servlet.http.HttpServletResponse res)
:::EXIT106

// invariants for the field "role" belonging to an
// object stored in the session under the key "user"
req.session.user.role != null
req.session.user.role.toString == ‘‘admin’’

// invariants for the fields "cart" and "total"
// stored in the session under the key "order"
req.session.order.cart.total

== req.session.order.total
req.session.order.total > req.session.order.tax

Generated Invariants

Figure 1: Example of invariants generated for an exit
point on line 106 of the jspService method of a servlet.

whose methods are executed on the server in response to
certain web requests. Servlets are managed by a servlet
container, which is an extension of a web server that
loads/manages servlets and provides services via a well-
defined API. These services include receiving and map-
ping requests to servlets, sending responses, caching, en-
forcing security restrictions, etc. Servlets can be devel-
oped as Java classes or as JavaServer Pages (JSPs). JSPs
are a mix of code and static HTML content, and they are
translated into Java classes that implement servlets.

4.1 Deriving Specifications

As mentioned previously, in this work, we consider pro-
gram specifications that can be expressed as invariants
over program variables. To derive these invariants, we
leverage Daikon [9, 11], a well-known tool for dynamic
detection of likely program invariants.

Daikon. Daikon generates program invariants using ap-
plication execution traces, which contain values of vari-
ables at concrete program points. It is capable of gene-
rating a wide variety of invariants that cover both single
variables (e.g., total ≥ 50.0) and relationships between
multiple variables (e.g., total = price ∗ num + tax).
Daikon-generated invariants are called likely invariants
because they are based on dynamic execution traces and
might not hold on all program paths.

Daikon comes with a set of front-ends. Each front-
end is specific to a certain programming language (such
as C or Java). The task of a front-end is to instrument
a given program, execute it, and create data trace files.
These trace files are then fed to Daikon for invariant gen-
eration. For our analysis, we leveraged the existing front
end for Java, called Chicory, and plugged it into a JVM
on top of which the Tomcat servlet engine [13] is exe-
cuted. This allowed us to intercept and instrument all
servlets executed by the Tomcat server.

The current implementation of Chicory produces
traces only for procedure entry and exit points and non-
local variables. Therefore, Daikon generates invariants
for method parameters, function return values, static and
instance fields of Java objects, and global variables.

Our changes. In addition to altering Chicory’s invoca-
tion model to work with Tomcat, we extended Chicory
with a way to include the content of user sessions into
the generated execution traces. Invariants over this data
are important for the vulnerability analysis of web appli-
cations because user sessions are an integral part of an
application’s state and directly affect its logic.

The content of user sessions is stored by a servlet con-
tainer in the form of dynamically-generated mappings
from a key to a value, i.e., as elements in a hash map con-
tainer. We found that, given the current design of Daikon
and Chicory, it is not possible to generate useful invari-
ants for the contents of such containers. The reason is
that Daikon requires the type and the name of all vari-
ables that can appear at a particular program point to be
declared before the first trace for a particular program
point is generated. This information is not available be-
forehand for containers like hash maps because they are
dynamically-sized and can contain elements of different
types.

To generate valid traces for Daikon, Chicory gener-
ates all declarations for program points at the applica-
tion loading time. At this time, it needs to know the ex-
act type of each variable/object in declaration to be able
to traverse the object structure and generate precise (or
interesting) invariants. For example, in order to gener-
ate a definition for the field role of the object of type
User (defined in Figure 1), which might be stored in the
user session of a servlet application under the key “user,”
Chicory needs to know that the object of the type User is
expected in the session.

To overcome these problems, we provide our front-
end with possible mappings from a key to an object type
that can be observed in a session during execution. For
example, for the code shown in Figure 1, we would need
to provide the following mappings:

5

user:myapp.User
cart:myapp.Cart
order:myapp.Order

We modified Chicory to use this information to gener-
ate more precise traces for session data. This information
allows for the generation of more interesting invariants,
such as the ones shown in the Figure 1. We extended the
front-end to generate traces for the content of user ses-
sions for every method in an application. As future work,
we plan to generate these mapping automatically for ar-
bitrary containers by generating new declarations as new
elements are found in a container, and then merging the
resulting traces before feeding them to Daikon.

To generate program execution traces, we wrote
scripts to automatically operate web applications. For
each application, these scripts simulate typical user ac-
tivities, such as creating user accounts, logging into the
application, choosing and buying items from a store, ac-
cessing administrative functionality, etc. The main idea
of this step is to exercise the application’s common ex-
ecution paths by following the links and filling out the
forms presented to the user during a typical interaction
with the application. The final outcome of the dynamic
analysis step is a file containing a serialized version of
likely invariants for the given web application. These
invariants serve as a (partial, simplified) specification of
the web application, and they are provided as input to the
next step of the analysis.

4.2 Model Checking Applications
Once the approximate specifications (i.e., the likely in-
variants) for a web application have been derived, the
next step is to analyze the application for supporting
“clues” and identify invariants that are part of a true pro-
gram specification. Any violation of such an invariant
represents a vulnerability.

We chose to use model checking for this step of the
analysis and implemented it in a tool called Waler (Web
Application Logic Errors AnalyzeR). Given a servlet-
based application and a set of likely invariants, Waler
systematically instantiates and executes symbolically the
servlets of the application imitating the functionality of
a servlet container. As the application is executed, Wa-
ler checks the truth value of provided likely invariants,
analyzes the application’s code for “clues,” and reports
possible logic errors. In this section, we describe the ar-
chitecture and execution model of Waler. Then, in Sec-
tion 4.3 we explain how Waler identifies interesting in-
variants and application logic vulnerabilities.

4.2.1 System Top-level Design

Waler is implemented on top of the Java PathFinder (JPF)
framework [19, 35], and its general architecture is shown

Virtual Machine

Search
Strategies

Symbolic Model Classes

Vulnerability
Analysis

Strategies

Program
Checks

Analyzer

Likely
Invariants
Analyzer

JPF

Symbolic Execution Extension

Java API Servlet API JSP API

Java VM
Functionality

Application Controller

Web
Application

Likely
Invariants

Core JPF

Libraries
Available to
Applications

Application
Driver

State
Serializers

Unmodified JPF components

Modified JPF components

New components

Figure 2: Waler’s architecture.

Figure 2. In this figure, dark gray boxes represent new
modules that we implemented, while dotted (light gray)
boxes represent parts of JPF that we had to extend.

JPF overview. JPF is an open-source, explicit-state
model checker that implements a JVM. It systemati-
cally explores an application’s state space by executing
its bytecode. JPF consists of a number of configurable
components. For example, the specific way in which an
application’s state space is explored depends on a cho-
sen Search Strategy – JPF core distribution includes a
number of basic strategies. The State Serializer compo-
nent defines how an application state is stored, matched
against others, and restored. JPF also comes with a num-
ber of interfaces that allow for its functionality to be ex-
tended and modified in arbitrary ways.

In general, JPF is capable of executing any Java class-
file that does not depend on platform-specific native
code, and many of the Java standard library classes can
run on top of JPF unmodified. However, in JPF, some of
the Java library classes are replaced with their model ver-
sions to reduce the complexity of their real implementa-
tions and/or to enable additional features. For example,
Java classes that have native method calls (such as file
I/O) have to be replaced by their models, which either
emulate the required functionality or delegate the native
calls to the actual JVM on top of which JPF is executed.

6

Also, JPF comes with a number of extensions that pro-
vide additional functionality on top of JPF. Below, we
discuss the JPF-SE extension for JPF, which we lever-
aged in Waler to enable symbolic execution.
The JPF-SE Extension. The JPF-SE extension for JPF
enables symbolic execution of programs over unbounded
input when using explicit-state model checking [2]. With
this extension, the Java bytecode of an application needs
to be transformed so that all concrete basic types, such
as integers, floats, and strings, are replaced with the cor-
responding symbolic types. Similarly, concrete opera-
tions need to be replaced with the equivalent operations
on symbolic values. For example, all objects of type int
are replaced with objects of type Expression. An addition
of two integers is replaced with a call to the plus method
of the Expression class. Following the standard symbolic
execution approach, all newly-generated constraints are
added to the path condition (PC) over the current execu-
tion path. The generation of constraints is done in the
methods of symbolic classes, and it is transparent to the
application. Whenever the PC is updated, it is checked
for satisfiability with a constraint solver, and infeasible
paths are pruned from execution.

Unfortunately, we found that JPF-SE was missing a
considerable amount of functionality that needed to be
added to make the system suitable for real-world appli-
cations. For example, the classes implementing symbolic
string objects were missing a significant number of sym-
bolic methods with respect to the java.lang.String API,
which is used extensively in web applications. Also, in
order to execute an arbitrary application using JPF-SE,
symbolic versions of many standard Java libraries are re-
quired. These libraries were not provided with the ex-
tension. Finally, a tool to perform the necessary transfor-
mations of Java bytecode was not publicly available, and,
therefore, we implemented our own transformer by lever-
aging ASM [25], a Java bytecode engineering library.
Waler overview. In order to execute servlet-based web
applications and analyze them for logic errors, we had to
extend JPF in a number of ways. As shown in Figure 2,
we implemented from scratch four main components: the
Application Controller (AC), the Vulnerability Analysis
Strategies (VAS), the Program Checks Analyzer (PCA),
and the Likely Invariants Analyzer (LIA). The AC com-
ponent is responsible for loading, mapping, and system-
atically initiating execution of servlets in a servlet-based
application. As the analyzed application itself, it runs on
top of the JVM implemented by core-JPF and uses sym-
bolic versions of Java libraries.

The other three components are internal to JPF, i.e.,
they are not visible to web applications and do not rely
on model classes. The LIA component is responsible for
parsing Daikon-generated invariants and checking their
truth value as a program executes. The PCA component

keeps track of all the program checks performed by an
application on an execution path. Finally, the VAS com-
ponent provides various strategies for vulnerability de-
tection based on the information provided by LIA and
PCA. We provide more details on how these modules
work in the following sections.

In addition, we had to extend a number of existing JPF
components to address the needs of our analysis. In par-
ticular, we modified existing search strategies, state in-
formation tracking, and implemented some missing parts
of JPF-SE. Due to space limitations, we will not explain
all of the changes unless they are significant for under-
standing our approach.

Finally, we extended JPF with a set of 40 model
classes that provide the servlet API and related inter-
faces (such as the JSP API). These classes implement the
standard functionality of a servlet container, but instead
of reading and writing actual data from/to the network,
they operate on symbolic values. Our implementation is
based on the real implementation of the servlet container
for Tomcat.

4.2.2 Execution Model

To systematically analyze a web application for logic er-
rors, Waler needs to be able to model all possible user in-
teractions with the application. To achieve that, it needs
to find all possible entry points to the application and
execute all the possible sequences of invocations using
symbolic input.

In general, a user can interact with a web application
in different ways: one can either follow the links (leading
to URLs) presented by the application (as part of a web
page) or can directly point the browser to a certain URL.
On the server side, after (and if) a request URL is mapped
to a servlet-based application, the path part of the URL
is used to locate a particular servlet that will handle the
request. We call the set of all such URL paths that lead to
the invocation of a servlet the “application entry points.”

Thus, before a program can be analyzed, we need to
identify all possible application entry points. In the gen-
eral case, there can be an infinite number of URLs that
lead to an invocation of a servlet; however, for each par-
ticular application, there is a finite and well-defined num-
ber of possible mappings from a request URL pattern to
a servlet. Thus, for the analysis, it is sufficient to find all
such mappings. For example, if an application has the
URL /login mapped to the AuthManager servlet and the
URLs /cart and /checkout mapped to the CartManager
servlet, it can be said that the application has three entry
points. In servlet-based applications, it is also possible
to have wildcard mappings, such as account/*, mapped
to a servlet. In this case, all URL paths starting with
/account/ are mapped to the same servlet. We consider

7

such mappings to represent single entry points and sim-
ply treat the part of the URL that matches the “*” as a
symbolic input. This is consistent with our handling of
other request parameters accessed by servlets, which are
also represented by symbolic values.

To find all entry points, our system inspects the ap-
plication deployment descriptor (typically, the web.xml
file), which defines how URLs requested by a user are
mapped to servlets. When analyzing the URL-to-servlet
mapping, we take into account that not all servlets are
directly accessible to users (those servlets that are not
directly accessible are typically invoked internally by
other servlets). Following the standard servlet invocation
model, all URLs that point to accessible (public) servlets
are assumed to be possible entry points.

Once the application’s entry points are determined, the
Application Controller systematically explores the state
space of the application. To this end, it initiates execu-
tion of servlets by simulating all possible user choices of
URLs. For example, if the application has three servlets
mapped to the URLs /login, /cart, and /checkout, the ap-
plication controller attempts to execute all possible com-
binations (sequences) of these servlets. The actual or-
der in which servlets are explored depends on the chosen
search strategy. JPF offers a limited depth-first search
(DFS) and a heuristics-based breadth-first search (BFS)
strategy. We found that DFS works better for our sys-
tem because it requires significantly less memory dur-
ing model checking. With DFS, a path is explored until
the system reaches a specific (configurable) limit on the
number of entry points that are executed.

4.2.3 State Space Management

Similar to other model checkers, Waler faces the state
explosion problem. Thus, to make Waler scale to real-
world web applications, we had to take a number of steps
to manage (limit) the exponential growth of the appli-
cation’s state space. In particular, after careful analysis
of several servlet-based applications, we found that JPF
often fails to identify equivalent states. The two main
reasons for that are: (1) the constraints added to the sym-
bolic PC are never removed from it due to the design of
JPF-SE1, and (2), without domain-specific knowledge,
JPF is not able to identify “logically equivalent” states.
Here we present three techniques that we implemented
to overcome these problems.

States in JPF. JPF comes with some mechanisms to
identify equivalent states. A state in JPF is a snapshot
of the current execution status of a thread, and it con-
sists of the content of the stack, heap, and static variables
storage. This snapshot is created when a sequence of ex-
ecuted instructions reaches a choice point, i.e., a point
where there is more than one way to proceed from the

current instruction. Choice points are thread-scheduling
instructions, branching instructions that operate on sym-
bolic values, or instructions where a new application en-
try point needs to be chosen. Whenever JPF finds a
choice point, a snapshot of the current state is created.
Then, the serialized version of the state is compared to
hashes of previously-seen states. The execution path is
terminated when the same state has been seen before.

We found that the basic version of JPF performs
garbage collection and canonicalization of objects on the
heap before hashing a state. However, it does not per-
form any additional analysis of memory content when
comparing states for equality, as JPF has no knowledge
of the domain-specific semantics of the objects in mem-
ory. As a result, JPF fails to recognize certain states
as logically equivalent. This leads to a large number of
states that are created unnecessarily. We discuss exam-
ples of some cases in which the standard JPF mechanism
fails to identify equivalent states below.
States in Waler. In Waler, we extend the concept of
JPF state to a “logical state” using the domain-specific
knowledge that Waler has about web applications. In
particular, we observe that the only information that is
preserved between two user requests in a servlet-based
application are the content of user sessions, application-
level contexts, the symbolic PC (which stores constraints
on symbolic variables stored in sessions), and data on
persistent storage. Since we do not model persistent stor-
age in Waler and always return a new symbolic value
when it is accessed, we ignore this information in our
analysis. Thus, the logical state of servlet-based applica-
tion is defined as the content of user sessions and appli-
cation contexts, and the PC. This is the only information
that should be considered when comparing states after
execution of a user request is finished.
State space reduction. Given the design of JPF and us-
ing our concept of logical state, we implemented three
solutions to reduce the state space of a web application.

First of all, we implemented an additional analysis
step to remove a constraint from the PC when it includes
at least one variable that is no longer live2. This is espe-
cially important when the execution of a user request is
finished, because, in a web application, input received by
one servlet is independent from input received by another
servlet, and, unless parts of it are stored in a persistent
storage, any constraints on previous input are unrelated
to the new one. The implemented solution is safe (it does
not affect the soundness of the analysis) and allows our
system to identify many states that are equivalent.

The second solution to reduce an application state
space is to prune many “irrelevant” paths from state
exploration. Consider, for example, an /error servlet,
which simply displays an error message, or a /products
servlet, which displays a list of available products. Exe-

8

1 public void _jspService(HttpServletRequest req,
2 HttpServletResponse res) {
3

4 User user = (User) session.getAttribute("User");
5 if(user==null) {
6 User.adminLogin(request,response);
7 return;
8 }
9 ...

10 if(request.getMethod().equalsIgnoreCase("post")) {
11 result = website.variables.
12 insert(new Variable(req));
13 }
14 }

/admin/variables/Add.jsp

1 public void _jspService(HttpServletRequest req,
2 HttpServletResponse res) {
3

4 User user = (User) session.getAttribute("User");
5 if(user==null || (!user.isAdmin())) {
6 User.adminLogin(request,response);
7 return;
8 }
9 ...

10 out.println("<a href=\"admin/variables/\
11 Add.jsp\">Add New");
12 }

/admin/variables/index.jsp

Figure 3: Simplified version of an unauthorized access vulnerability in the JspCart application.

cuting such servlets often results in changes to the state
of the memory, for example, due to different Java classes
that must be loaded. However, once such a servlet is ex-
ecuted, the application is still in the same logical state.
Also, the state after executing, for example, the servlet
/login will be logically equivalent to the state resulting
from the execution of the sequence of servlets [/error,
/login]. From this observation, it is clear that it would be
beneficial to identify servlets whose executions do not
modify the logical state of the application. The reason
is that there is no need to consider them for vulnerabil-
ity analysis. Therefore, after a servlet is executed, we
analyze the content of the application’s memory to de-
termine whether the application logical state has been
changed (for example, because of changes to the content
of the user session). When no changes are detected, the
exploration of the current execution path is terminated.
This modification also does not compromise the sound-
ness of the analysis, assuming that the memory analysis
takes into the account all the component of the applica-
tion logical state.

A third technique to limit the state space explosion
problem is to identify irrelevant entry points, so that the
servlets mapped to these URLs do not need to be ex-
ecuted. More precisely, during model checking, when
our analysis determines that a servlet does neither read
from nor write to the application’s logical state at all, the
execution of this page can be ignored for all other exe-
cution paths. The pruning of irrelevant servlets is espe-
cially helpful in large applications, where the execution
of a servlet over symbolic inputs can take several min-
utes (and thus, can result in days of model checking time
if the servlet is executed on multiple paths).

To summarize, the state explosion problem that can
rise in the model checking of web applications can be
significantly improved in many cases. In particular, we
developed the following three techniques to limit the
growth of an application’s state space: we improved the
existing JPF state hashing algorithm to disregard a path

condition when its variables are out of scope, we found
a way to prune the exploration of irrelevant paths, and
we identify irrelevant servlets and discard them from our
vulnerability analysis. We found that these techniques
often allow for a significant reduction in the number of
states explored by Waler. For example, running Waler on
the Jebbo-2 application (described in Section 5) without
using any of our state reduction techniques resulted in
the execution of 322,637 states, and it took around 223
minutes to terminate. When the same application was
executed using our three heuristics, Waler terminated in
about a minute and needed to explore only 529 states to
obtain the same result.

4.3 Vulnerability Detection
As described in the previous section, Waler uses model
checking to systematically explore the state space of an
application. During the model checking process, the sys-
tem checks whether the likely invariants generated by
Daikon for a program point hold whenever that point is
reached. In our current implementation, we only con-
sider likely invariants that are generated for exit points
of methods (note that we differentiate between different
exit points). The reason is that methods often check their
parameters inside the function body (rather than in the
caller). As a result, entry invariants are typically less sig-
nificant.

To see an example of invariants that can be produced
by our system, consider the code in Figure 3, which
shows a vulnerability that Waler found in the JspCart ap-
plications (see Section 5). The left listing shows the code
of the /admin/variables/Add.jsp servlet, which is a privi-
leged servlet that should only be invoked by an adminis-
trator. This is reflected by the set of likely invariants that
are generated for the exit point on Line 14 for Add.jsp3:
(1) session.User != null
(2) session.User.isAdmin == true
(3) session.User.txtUsername == "admin@jspcart.com"

It can be seen that the first two invariants are part of
the “true” program specification, while the third invariant

9

is spurious (an artifact of the limited test coverage). As
a side note, the invariant for the exit point at Add.jsp:
Line 7 would be session.User == null.

To help us to determine whether a likely invariant
holds or fails on a path, we implemented the Program
Checks Analyzer module that keeps information about
all the checks performed on an execution path. When
a comparison instruction is executed, the PCA records
the names of the variables involved and the result of the
comparison. Also, the PCA keeps track of all variable
assignments in the program. As a result, whenever the
PCA encounters a check that operates on local variables,
it can determine how this check constrains (affects) non-
local variables. Recall that Daikon does not generate in-
variants for local variables, and, therefore, we are not in-
terested in comparisons over local variables unless they
store session data or method parameters.

Consider now what happens when Waler analyzes the
Add.jsp servlet. After Waler executes the if-statement on
Line 5, information about a new check is added to the
set of current constraints accumulated by the PCA. If the
user is authenticated, the value stored in the session
object under the key User is not null. In this case,
the PCA adds session.User != null to the set of
checks along the current execution path, and the execu-
tion proceeds at Line 94. Otherwise, the PCA records the
fact session.User == null, and execution proceeds
at Line 6.

Once the Line 14 of Add.jsp is reached, Waler checks
whether all likely invariants generated for this point hold.
A likely invariant holds on the current path if we can
determine that the relationship among the involved vari-
ables is true. An invariant fails otherwise. To determine
whether a likely invariant holds, we check whether the
truth of this invariant can be determined directly given
the current application state (i.e., the invariant involves
concrete values). If not, we check whether the set of
constraints accumulated on the current path implies the
relationship defined by the invariant using the constraint
solver employed by the JPF-SE.

Following the example, it can be seen that the first in-
variant for Line 14 always holds (because of the check on
Line 5), while the other two might fail on some paths. In
principle, we could immediately report the violations of
the last two invariants as a potential program flaw. How-
ever, this would raise too many false positives, due to
spurious invariants. In the following sections, we intro-
duce two techniques to identify those invariants that are
relevant to the detection of web application logic flaws.

4.3.1 Supported Invariants

The first technique to identify real invariants is based on
the insight that many vulnerabilities are due to developer

oversights. That is, a developer introduces checks that
enforce the correct behavior on most program paths, but
misses an unexpected case where the correct behavior
can be violated.

To capture this intuition, we defined a technique that
keeps track of which paths contain checks that support an
invariant and which paths are lacking such checks. More
precisely, an execution path on which a likely invariant
holds and it is supported by a set of checks on that path
is added to the set of supporting paths for this invariant.
That is, along a supporting path, the program contains
checks that ensure that an invariant is true. A path on
which a likely invariant can fail is added to the set of
violating paths. When a likely invariant holds on all pro-
gram paths to a given program point, then we know that
it holds for all executions and there is no bug. When all
paths can possibly violate a likely invariant, then we as-
sume that the programmer did not intend this invariant
to be part of the actual program specification, and it is
likely an artifact of the limited test coverage. An appli-
cation logic error is only reported by Waler if at least one
supporting path and at least one violating path are found
for an invariant at a program point.

Let us revisit the example of Figure 3. Waler deter-
mines that the first invariant on Line 14 of Add.jsp
always holds. The third one is never supported, and,
thus, it is correctly discarded as spurious. Moreover,
Waler finds a violating path for the second invariant
(session.User.isAdmin == true) by calling the
Add.jsp servlet with a user in non-administrative role.
However, the system also inspects the path where in-
dex.jsp is called first, which reflects the normal, in-
tended flow of the application. This servlet, shown on
the right of Figure 3, contains a check on Line 5 that
adds the fact session.User.isAdmin == true to
the PC (assuming that the user is authenticated as an
administrator). In this case, when Add.jsp is invoked
after index.jsp, the system determines that the invari-
ant session.User.isAdmin == true holds and is
supported. Thus, Waler finds a supporting path for this
invariant. As a result, the fact that one can execute the
main method of Add.jsp directly, violating its exit invari-
ant session.User.isAdmin == true, is correctly
recognized as an unauthorized access vulnerability.

We found that checking for supported invariants works
well in practice. However, it can produce false posi-
tives and is not capable of capturing all possible logic
flaws. The main source of false positives stems from the
problem that the violation of an invariant, even when it
is supported by a program check on some paths, does
not necessarily result in a security vulnerability. For ex-
ample, access to a normally protected page does not al-
ways result in a vulnerability because either (1) a sensi-
tive operation performed by the page fails if a set of pre-

10

1 public void _jspService(HttpServletRequest req,
2 HttpServletResponse res) {
3

4 if(req.getMethod() == "GET") {
5 ...
6 out.println("<form method=post"
7 + " action=\"edituser.jsp\">");
8 out.println("<input type=hidden"
9 + " name=\"username\" value="

10 + session.getAttribute("username") + ">");
11 ...
12 out.println("</form>");
13 }
14 if(req.getMethod() == "POST") {
15 ...
16 stmt = conn.prepareStatement("UPDATE users SET"
17 + " password = ?, name = ? WHERE username = ?");
18 stmt.setString(1, req.getParameter("password"));
19 stmt.setString(2, req.getParameter("name"));
20 stmt.setString(3, req.getParameter("username"));
21 stmt.executeUpdate();
22 }
23 }

edituser.jsp

Figure 4: Simplified user profile editing vulnerability
(Jebbo-6).

1 public void doPost(HttpServletRequest req,
2 HttpServletResponse res) {
3 ...
4 sess = request.getSession(true);
5 if(action.equals("/editpost")){
6 s = conn.prepareStatement("UPDATE posts SET"
7 + " author= ?, title = ?, entry = ?"
8 + " WHERE id = ?");
9 s.setString(1, (String)sess.getAttribute("auth"));

10 s.setString(2, req.getParameter("title"));
11 s.setString(3, req.getParameter("entry"));
12 s.setString(4, req.getParameter("id"));
13 s.executeUpdate();
14 }
15 }

PostController.java

Figure 5: Simplified post editing vulnerability (Jebbo-5).

conditions, uncontrolled by an attacker, is not satisfied,
or (2) there is no sensitive operation on the path executed
during the access. Reasoning about these cases is ex-
tremely hard for any automated tool. However, we found
that such false positives often indicate non-security bugs
in the code, and, thus, they are still useful for a developer.
This technique also fails to identify logic vulnerabilities
when the programmer does not introduce any checks for
a security-relevant invariant at all. In such cases, Wa-
ler incorrectly concludes that an invariant is spurious be-
cause it cannot find any support in the code. To improve
this limitation, we introduce an additional technique in
the following section.

4.3.2 Internal Consistency

As mentioned previously, Waler will discard invariants
as spurious when they are not supported by at least one
check along a program path. This can lead to missed

vulnerabilities when the invariant is actually security-
relevant. To address this problem, we leverage general
domain knowledge about web applications and identify
a class of invariants that we always consider significant,
regardless of the presence of checks in the program.

We consider a likely invariant to be significant when
it relates data stored in the user session with data that
is used to query a database. Capturing this type of re-
lationships is important because both the user session
object and the database are the primary mechanism to
store (persistent) information related to the logical state
of the application. Moreover, we do not allow any arbi-
trary relationships: instead, we require that the invariant
be an equality relationship. Such relationships are rarely
coincidental because, by design, session objects and the
database often replicate the same data.

Whenever Waler finds a path through the application
that violates a significant invariant, it reports a logic
vulnerability. To implement this technique, the system
needed to be extended in two ways. First, we instru-
mented database queries so that the variables used in cre-
ating SQL queries are captured by Daikon and included
into the invariant generation process. To this end, for
each SQL query in the web application, we introduced a
“dummy” function. The parameters of each function rep-
resent the variables used in the corresponding database
query, and the function body is empty. The purpose of
introducing this function is to force Daikon to consider
the parameters for invariant generation at the function’s
exit point. Second, we require a mechanism to iden-
tify significant invariants. This was done in a straight-
forward fashion by inspecting equality invariants for the
presence of variables that are related to the session object
and database queries.

To see how the internal consistency technique can be
used to identify a vulnerability, consider the code shown
in Figure 4. This figure shows a snippet of code taken
from the edituser.jsp servlet in one of the Jebbo applica-
tions (see Section 5)5. The purpose of this servlet is to
allow users to edit and update their profiles. When the
user invokes the servlet with a GET request, the applica-
tion outputs a form, pre-filled with the user’s current in-
formation. As part of this form, the application includes
the user’s name in the hidden field username, which is
retrieved from the session object (shown in the upper half
of Figure 4). When the user has finished updating her in-
formation, the form is submitted to the same servlet via a
POST request. When this request is received, the appli-
cation extracts the name of the user from the username
parameter and performs a database query (lower half of
Figure 4).

For this servlet, the dynamic analysis step (Dai-
kon) generates the invariant session.username ==
db query.parameter3, which expresses the fact

11

that a user can only update her own profile. Unfortu-
nately, it is possible that a malicious client tampers with
the hidden field username before submitting the form.
In this case, the profile of an arbitrary user can be mod-
ified. Waler detects this vulnerability because it deter-
mines that there exists a path in the program where the
aforementioned invariant is violated (as the parameter
username is not checked by the code that handles the
POST request). Since this invariant is considered signif-
icant, a logic flaw is reported.

The idea of checking the consistency of parameters to
database queries can be further extended to also take into
account the fields of the database that are affected by a
query, but that do not appear explicitly in the query’s pa-
rameters. Consider, for example, a message board ap-
plication that allows users to update their own entries.
It is possible that the corresponding database query uses
only the identifier of the message entry to perform the
update. However, when looking at the rows that are af-
fected by legitimate updates, one can see that the name of
the owner of a posting is always identical to the user who
performs the update. To capture such consistency invari-
ants, we extended the parameters of the “dummy” func-
tion to not only consider the inputs to the database query
but to also include the values of all database fields that
the query affects (before the query is executed). When
multiple database rows are affected, the “dummy” func-
tion is invoked for each row, allowing Daikon to capture
aggregated values of fields.

By extending the “dummy” function as outlined pre-
viously, Daikon can directly generate invariants that in-
clude fields stored in the database, even when these fields
are not directly specified in the query parameters. Again,
we consider invariants as significant if they introduce an
equality relationship between database contents and ses-
sion variables. The intuition is that these invariants im-
ply a constraint on the database contents that can be ac-
cessed/modified by the query. If it was possible to violate
such invariants, an attacker could modify records of the
database that should not be affected by the query.

For example, this allows us to detect vulnerabilities
where an attacker can modify the messages of other users
in the Jebbo application. Consider the doPost func-
tion shown in Figure 5. The problem is that an au-
thenticated user is able to edit the message of any other
user by simply providing the application with a valid
message id. During the dynamic analysis, the invari-
ant db.posts author == session.auth is gener-
ated, even though the posts author field is not used
as part of the update query. During model checking, we
determine that this invariant can be violated (and report
an alert) because there is no check on the id parameter
that would enforce that only the messages written by the
current user can be modified.

4.3.3 Vulnerability Reporting

For each detected bug, Waler generates a vulnerability
report. This report contains the likely invariant that was
violated, the program point where this invariant belongs
to, and the path on which the invariant was violated
(given as a sequence of servlets and corresponding meth-
ods that were invoked). This information makes it quite
easy for a developer or analyst to verify vulnerabilities.
Currently, vulnerabilities are simply grouped by program
points. Given the low number of false positives, this al-
lows for an effective analysis of all reports. However, not
every alert generated by Waler currently maps directly
to a vulnerability or a false positive. We found several
situations where several invariant violations referred to
the same vulnerabilities (or a false positives) in applica-
tion code. For example, Waler generated several alerts in
situations when (conceptually) the same invariant is vi-
olated at different program points or when two distinct
invariants refer to the same application’s concept. Find-
ing better techniques to aggregate and triage reports in
such situations is an interesting topic of research, which
we plan to investigate in the future.

4.3.4 Limitations

Our approach aims at detecting logic vulnerabilities in
a general, application-independent way. However, the
current prototype version of Waler has a number of lim-
itations, many of which, we believe, can be solved with
more engineering. First, the types of vulnerabilities that
can be identified by Waler are limited by the set of
currently-implemented heuristics. For example, if an ap-
plication allows the user to include a negative number of
items in the shopping cart, we would be able to identify
this issue only if the developer checked for that number
to be non-negative on at least one program path leading
to that program point. In addition, this check needs to be
in a direct if -comparison6 between variables. Conditions
deriving from switch instructions or resulting from com-
plex operations (such as regular expression matching) are
not currently implemented.

Another limitation stems from the fact that we need a
tool to derive approximations of program specifications.
As a result, the detection rate of Waler is bounded by the
capabilities of such a tool. In the current implementation,
we chose to use Daikon. While Daikon is able to derive a
wide variety of complex relationships between program
variables, it has a limited support for some complex data
structures. For example, if the isAdmin flag value is
stored in a hash table, and it is not passed as an argument
to any application function, Daikon will not be able to
generate invariants based on that value. This limitation
could be improved by implementing a smarter explo-
ration technique for complex objects and/or by tracing

12

local and temporary variables for the purpose of likely
invariant generation. However, care needs to be exer-
cised in this case to avoid an explosion in the number of
invariants generated.

Another issue that we faced when working with Dai-
kon was scalability: in its current implementation, Dai-
kon creates a huge data structure in main memory when
processing an execution trace. As a result, using Daikon
on a larger application requires a large amount of RAM.
We worked around this limitation by partitioning the ap-
plication into subsets of classes and by performing the
likely invariant generation on each subset separately.

A more import limitation of Daikon is that invariants
generated by the tool cannot capture all possible rela-
tions. For example, the currently supported by Daikon
invariants do not directly capture such temporal relations,
as “operation A has to precede operation B.” To address
these limitations, different “intended behavior” capturing
tools (such as [1]) could be employed by Waler in the
first step of the analysis, although we leave this research
direction for future work.

Another, more general, limitation of the first step of
our analysis is the fact that we need to exercise the ap-
plication in a “normal” way (i.e., not deviating from the
developer’s intended behavior). This part cannot be fully
automated and needs human assistance. Nevertheless,
many tools exist to ease the task of recording and script-
ing browsing user activity, such as Selenium [31].

Finally, the state explosion problem is one of the main
limitations of the chosen model checking approach. We
have already described several heuristics that help Waler
limiting the state space of an application, and currently,
we are working on implementing a combination of con-
crete and symbolic execution techniques to further im-
prove scalability.

5 Evaluation

We evaluated the effectiveness of our system in detecting
logic vulnerabilities on twelve applications: four real-
world applications, (namely, Easy JSP Forum, JspCart7,
GIMS and JaCoB), which we download from the Source-
Forge repository [28], and eight servlet-based applica-
tions written by senior-level undergraduate students as
part of a class project, named Jebbo. When choosing
the applications, we were looking for the ones that could
potentially contain interesting logic vulnerabilities, were
small-enough to scale with the current prototype of Wa-
ler, and did not use any additional frameworks (such as
Struts or Faces). While we show that it is possible to
scale Waler to real-world applications, its scalability is
still a work in progress as it is based on two tools, JPF
and Daikon, that were not designed to work on large ap-
plications.

All chosen applications were analyzed following the
techniques introduced in Section 4. During the model
checking phase, we explored paths until a depth of 6 (that
is, the limit for the depth-first search of JPF was set to 6).
Note that all vulnerabilities reported below were found at
depth of three or less; we then doubled the search depth
to let Waler check for deeper bugs. All tests were per-
formed on a PC with a Pentium 4 CPU (3.6 GHz) and 2
Gigabytes of RAM.

The results of our analysis are shown in Table 1. Wa-
ler found 29 previously-unknown vulnerabilities in four
real-world applications and 18 previously-unknown vul-
nerabilities in eight Jebbo applications. It also produced
a low number of false positives. In Table 1, the columns
Lines of Code and Bytecode Instructions show the size of
the applications in terms of the number of lines of Java
code (JSP pages were first compiled into their servlet
representations) and of the number of bytecode instruc-
tions, respectively. The column Entry Points shows how
many entry points were found and analyzed by Waler and
the column States Explored shows how many states were
covered. The columns Likely Invariants and Invariants
Violated respectively show how many invariants were
generated by Daikon and how many of them were re-
ported as violated by Waler. The numbers in the column
Alerts represent the (manual) aggregation of the reported
invariants violations (as it is discussed in Section 4.3.3).
The columns Vulnerabilities, Bugs, and False Positives
show the aggregated number of vulnerabilities, security-
unrelated bugs, and false alarms that were produced by
Waler. Note that the numbers on these columns are based
on the analysis of the aggregated alerts. Finally, the col-
umn Running Time shows the time required for the anal-
ysis.

5.1 Vulnerabilities

Easy JSP Forum: The first application that we ana-
lyzed is the Easy JSP Forum application, a community
forum written in JSP. Using Waler, we found that any
authenticated user can edit or delete any post in a fo-
rum. To enforce access control, the Forum application
does not show a “delete” or “edit link” for a post if the
current user does not have moderator’s privileges for the
current forum but fails to check these privileges when
a delete or an edit request is received. Thus, if a user
forges a delete/edit request to the application using a
valid post id (all ids can be obtained from the source
code of web pages accessible by all users), a post will
be deleted/modified.
GIMS: The second application that we analyzed is the
Global Internship Management System (GIMS) web ap-
plication, a human resource management software. Us-
ing Waler, we found that many of the pages in the ap-

13

Application Lines Bytecode Entry States Likely Invariants Alerts Vulne- Bugs False Runtime
of Code Instructions Points Explored Invariants Violated rabilities Positives (min)

Easy JSP Forum 2,416 7,348 2 251,657 5,824 6 3 2 0 1 319
GIMS 6,153 11,269 40 36,228 6,993 55 27 23 2 2 88
JaCoB 8,924 15,129 38 26,809 81,832 0 0 0 0 0 79
JspCart 21,294 45,765 86 1,152,661 34,286 5 5 5 0 0 4,576
Jebbo

1 1,027 2,304 16 1,725 8,777 2 2 2 0 0 1.5
2 1,882 4,227 20 529 7,767 3 2 0 0 2 1
3 1,438 2,993 17 195 7,388 2 2 2 0 0 1
4 1,182 2,709 8 73 4,474 3 3 0 2 1 0.5
5 804 2,025 8 59 2,792 3 3 1 0 2 0.5
6 1,524 3,709 19 268 5,159 9 9 6 3 0 0.5
7 1,499 2,826 15 398 3,342 10 5 4 1 0 0.5
8 1,463 2,782 15 1,031 8,468 15 6 3 3 0 1.2

Table 1: Experimental results.

plication do not have sufficient protection from unautho-
rized access. In particular, our tool correctly identified
14 servlets that can be accessed by an unauthenticated
user (a user that is not logged in at all). Most of these
pages do contain a check that ensures that there is some
user data in a session (which is only true for authenti-
cated users). When a check fails, the application gener-
ates output that redirects the client’s browser to a login
page. Unfortunately, at this point, the application does
not stop to process the request due to a missing return
statement. Moreover, we found that certain pages in the
GIMS application that should only be accessible to users
with administrative privileges do not have checks to con-
firm the role of the current user. As a result, nine admin-
istrative pages were correctly reported as vulnerable.

JaCoB: The third application is JaCoB, a community
message board application that supports posting and
viewing of messages by registered users. For this pro-
gram, our tool neither found any vulnerabilities nor did
it generate any false alert. However, closer analysis of
the application revealed two security flaws, which could
not be identified with the techniques used by Waler. For
example, when a user registers with the message board or
logs in, she is expected to provide a username and a pass-
word. Unfortunately, when this information is processed
by the application, the password is simply ignored. Also,
in this application, a list of all its users and their private
information is publicly available. These two problems
represent serious security issues; however, they cannot
be detected by Waler because the program specification
that can be inferred from the application’s behavior does
not contain any discrepancies with respect to the appli-
cation’s code.

JspCart: The fourth test application is JspCart, which is
a typical online store. Waler identified a number of pages
in its administrative interface that can be accessed by
unauthorized users. In JspCart, all pages available to an
admin user are protected by checks that examine the User
object in the session. More precisely, the application ver-

ifies that a user is authenticated and that the user has ad-
ministrative privileges. However, Waler found that four
out of 45 pages are missing the second check. Therefore,
any user that has a regular account with the store can ac-
cess administrative pages and add, modify, or delete set-
tings (e.g., the processing charge for purchases). A sim-
plified version of one of these vulnerabilities is shown
in Figure 3. Waler also found a logic vulnerability that
allows an authenticated user to edit the personal informa-
tion of another user by submitting a valid email address
of an existing user. This vulnerability is similar to the
one shown in Figure 4.

Jebbo: We analyzed a set of eight Jebbo applications that
were written by senior-level undergraduate students as a
class project. Jebbo is a message board application that
allows its users to open accounts, post public messages,
and update their own messages and personal information.
Some of the applications also implement a message rat-
ing functionality. For this project, all students were pro-
vided with a description of the application to implement
along with a set of rules (including security constraints)
that were expected to be enforced by the application.

After running Waler on this set of applications, we
found that six out of eight applications contained one or
more logic flaws. Examples of the vulnerabilities found
by Waler include the fact that unauthenticated users can
post a message to the board, and the lack of authoriza-
tion checks when users rate an existing message (e.g., in
order to avoid for a user to rate its own messages). Iron-
ically, most of the student followed the provided specifi-
cation carefully and were checking that access to certain
pages is limited to authenticated users only; however, due
to various mistakes, the enforcing checks were not al-
ways sufficient. For example, common problems that we
found are missing return statements on an error path and
a failure to foresee all possible paths available to a user
to access a certain functionality.

Waler identified a number of application logic flaws
that are associated with unauthorized data modification,

14

such as the possibility to edit personal information or
posts belonging to another user. Some of the examples of
these vulnerabilities are shown in Figure 4 and Figure 5.
These vulnerabilities are classic examples of inconsis-
tent usage of data by the application. It is interesting to
observe that even though the students were aware of pos-
sible parameter tampering vulnerabilities, and, in many
cases, they were very careful about checking user input
for validity, they often failed to apply this knowledge to
cases where there were multiple paths to the same pro-
gram point.

The results for the Jebbo application demonstrate that
logic flaws are hard to avoid, even in simple web appli-
cations. Almost all applications in this set were found
to be vulnerable despite the fact that the students were
given a clear program specification and knew basic web
security practices. Given the class level of the students
who were enrolled in the class, it is reasonable to assume
that their programming skills are not far off from those
of entry-level programmers. This, together with the fact
that the complexity of real-world applications is much
higher than the complexity of the Jebbo application, can
be seen as an indication of how wide-spread web appli-
cation logic flaws are. Moreover, it can be argued that
many real-world application are, at least partially, writ-
ten by students who are widely employed year-round as
interns.

5.2 Discussion

As it is shown in Table 1, Waler generated a low number
of false positives. Careful analysis of the alerts which did
not represent a vulnerability revealed that the majority
of them represent true weaknesses in code. These alerts
were classified as bugs. We found that these bugs were
either potential vulnerabilities that turned out to be unex-
ploitable in particular situations or were not interesting
for exploitation. For example, an unauthenticated user
might be able to access a certain page, but this access
does not contain any sensitive information. We classified
the rest of the alerts as false positives.

We also carefully analyzed the applications for false
negatives. We found that Waler missed some security
problems, like the ones in JaCoB, but we consider these
vulnerabilities to be out of scope as they cannot be de-
tected using our approach. We also identified several
cases where Waler missed vulnerabilities that should be
detectable using the described approach. The main rea-
son for such false negatives is the incomplete modeling
of all application features in the current version of Waler.
For example, Waler only identifies program checks in the
form of if -statements, but in real applications, checks can
be implemented using, for instance, database queries and

regular expressions. Precise modeling of such constructs
is left for future work.

The other way to evaluate the false negatives rate of
Waler would be to run it on an application that has some
known logic vulnerabilities. Unfortunately, we found a
very limited number of such applications to be available,
and none of them met all of our current selection criteria
for test applications.

6 Related Work

Our work is related to several areas of active research,
such as deriving application specifications, using specifi-
cations for bug finding, and vulnerability analysis of web
applications. However, due to the limited space avail-
able, in this section we will only highlight the research
that, in our opinion, is most related.

First, our approach is related to a number of ap-
proaches that combine dynamically-generated invariants
with static analysis. For example, Nimmer and Ernst ex-
plore how to integrate dynamic detection of program in-
variants and their static verification on a set of simple
stand-alone applications using Daikon and the ESC/Java
static checker [27]. The invariants that are verified by
the static checker on all paths are determined to be the
real invariants for an application, and the invariants that
could not be statically verified are shown as warnings
to the user. The main goal of this research is to show
the feasibility of the proposed approach rather than to
find bugs. Another work that explores benefits of com-
bining Daikon-generated invariants with static analysis is
the DSD-Crasher tool by Csallner and Smaragdakis [8].
The main goal of this system is to decrease the false pos-
itives rate of a static bug-finding tool for stand-alone Java
applications. Dynamically-generated invariants are used
by the CnC tool (also based on ESC/Java) as assump-
tions on methods arguments and return values to narrow
the domain searched by the static analyzer. In Waler, in
contrast to both approaches, we do not assume that the
invariants generated by Daikon are correct, and we only
consider them to be clues for vulnerability analysis. In-
troducing our two additional techniques to differentiate
between real and spurious invariants allows us to avoid
many of the false positives due to limitations of the dy-
namic analysis step.

Our work is also related to the research on using an
application’s code to infer application-specific properties
that can be used for guided bug finding. To the best of our
knowledge, one of the first techniques that uses inferred
specifications to search for application-specific errors is
the work by Engler et al. [10]. Their goal is similar to
ours in the sense that both works are trying to identify vi-
olations of likely invariants in applications. The way it is
achieved, though, is very different in the two approaches.

15

While we infer specifications from dynamic analysis and
check for possible violations in the code via symbolic ex-
ecution, Engler’s work carries out all the steps via static
analysis: a set of given templates is used to extract a set
of “beliefs” from the code. Afterward, patterns contra-
dicting these “beliefs” are identified in the code. While
some of the templates may be useful for web applica-
tions, most of the bugs they try to identify are relative to
kernel and memory-unsafe programming languages op-
erations. Moreover, we believe that having an additional
source of information (i.e., dynamic traces) for applica-
tion invariants makes our system more robust.

There is also recent work that uses statistical analysis
and program code to learn certain properties of the appli-
cation, with the goal of searching for application-specific
bugs. For example, Kremenek et al. propose a statistical
approach, based on factor graphs, to automatically infer
which program functions return or claim ownership of
a resource [21]. The AutoISES tool applies the idea of
using statically-inferred specifications to the detection of
vulnerabilities in the implementations of access control
mechanisms for OS-level code [34]. The differences be-
tween these approaches and ours are similar to the ones
with the Engler’s work. Both approaches use statistical
analysis to find violations of properties that must hold
for all program points, and they do not require reasoning
about the values of variables.

Learning invariants through dynamic analysis has al-
ready found application security purposes, mostly in or-
der to train an Intrusion Detection System. Baliga et
al. [4] employ Daikon to extract invariants on kernel
structures from periodic memory snapshot of a non-
compromised running system. After the training phase,
these learned invariants are used to detect the presence of
kernel rootkits that may have altered vital kernel struc-
tures. A conceptually similar approach has also been ap-
plied by Bond et al. [6] to Java code through instrumen-
tation of the Java Virtual Machine. An initial learning
phase is employed to record the calling context and call
history for security-sensitive functions. Afterwards, the
collected information is used to identify function invoca-
tions with an anomalous context. An anomalous context
or history is considered an indicator of an attempt to di-
vert the intended flow of the application, possibly by the
exploitation of a logic error in the code. In that case, an
alert is triggered or the execution is aborted.

Although both the techniques proposed by Baliga and
Bong share with ours an initial dynamic learning phase,
how the information is leveraged differs. For example,
unlike the two approaches above, we do not assume that
the likely invariants generated by the first phase are real
invariants, rather we simply use them as hints for further
analysis. In addition, while in our second phase we try to
identify logic errors in the code by means of static anal-

ysis, they instead try to detect attacks being performed
on a live system. Such run-time detection imposes an
overhead, which results in the requirement for dedicated
hardware for [4] and a 2%-9% penalty in performance
for [6]. The authors of the latter work, in particular,
traded some coverage of the code (limiting to security-
related functions) in order to retain acceptable perfor-
mance. Even though they focused on logic errors, a di-
rect comparison with their evaluation environment was
not possible, because of the different targets of the anal-
ysis. More precisely, they looked for bugs in the Java
libraries triggered by Java applets, rather than bugs in
Java-based web applications.

Another direction of research deals with protection of
web service components against malicious and/or com-
promised clients. Guha et al. [15] employ static anal-
ysis on JavaScript client code in order to extract an ex-
pected client behavior as seen by the server. The server is
then protected by a proxy that filters possibly malicious
clients which do not conform to the extracted behavior.

Finally, our work is related to a large corpus of work,
such as [16, 5, 7, 17, 18, 22, 26, 30, 33, 36, 23, 29], in the
area of vulnerability analysis of web applications. How-
ever, most of these research works focus on the detec-
tion of or the protection against input-validation attacks,
which do not require any knowledge of application-
specific rules.

Among the approaches cited above, Swaddler [7] and
MiMoSA [5] are tools developed by our group that look
for workflow violation attacks in PHP-based web appli-
cations, using a number of different techniques (includ-
ing Daikon-generated invariants). However, Waler’s ap-
proach is more general and is able to identify any kind of
a policy violation that is either reflected by a check in the
application or that violates a consistency constraint.

Our work is also related to the QED tool presented
in [23]. QED uses concrete model checking (with a set
of predefined concrete inputs) to identify taint-based vul-
nerabilities in servlet-based applications. The main sim-
ilarity between the two tools is that they both use a set
of heuristics to limit an application’s state space during
model checking. Heuristics used by QED, however, are
more specific to the taint-propagation problem and re-
quire an additional analysis step.

7 Conclusions

In this paper, we have presented a novel approach to the
identification of a class of application logic vulnerabil-
ities, in the context of web applications. Our approach
uses a composition of dynamic analysis and symbolic
model checking to identify invariants that are a part of the
“intended” program specification, but are not enforced
on all paths in the code of a web application.

16

We implemented the proposed approaches in a tool,
called Waler, that analyzes servlet-based web applica-
tions. We used Waler to identify a number of previously-
unknown application logic vulnerabilities in several real-
world applications and in a number of senior undergrad-
uate projects.

To the best of our knowledge, Waler is the first tool
that is able to automatically detect complex web appli-
cation logic flaws without the need for a substantial hu-
man (annotation) effort or the use of ad hoc, manually-
specified heuristics.

Future work will focus on extending the class of ap-
plication logic vulnerabilities that we can identify. In ad-
dition, we plan to extend Waler to deal with a number of
frameworks, such as Struts and Faces. This will require
creating “symbolic” versions of the libraries included in
these frameworks. This initial development effort will
allow us to apply our tool to a much larger set of web ap-
plications, since most large-scale, servlet-based web ap-
plications rely on one of these popular frameworks, and
the lack of their support in Waler was a serious limit-
ing factor when choosing real-world applications for the
evaluation described in this paper.

8 Acknowledgments

We want to thank David Evans, Vinod Ganapathy,
Somesh Jha, and a number of anonymous reviewers who
gave us very useful feedback on a previous version of
this paper.

References
[1] AMMONS, G., BODÍK, R., AND LARUS, J. Mining specifica-

tions. In Proceedings of the 29th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages (2002), ACM,
pp. 4–16.

[2] ANAND, S., PASAREANU, C., AND VISSER, W. JPF-SE: A
Symbolic Execution Extension to Java PathFinder. In Proceed-
ings of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS) (2007),
Springer.

[3] ANLEY, C. Advanced SQL Injection in SQL Server Applica-
tions. Tech. rep., Next Generation Security Software, Ltd, 2002.

[4] BALIGA, A., GANAPATHY, V., AND IFTODE, L. Automatic In-
ference and Enforcement of Kernel Data Structure Invariants. In
Computer Security Applications Conference, 2008. ACSAC 2008.
Annual (2008), pp. 77–86.

[5] BALZAROTTI, D., COVA, M., FELMETSGER, V., AND VIGNA,
G. Multi-module Vulnerability Analysis of Web-based Applica-
tions. In Proceedings of the ACM conference on Computer and
Communications Security (CCS) (2007), pp. 25–35.

[6] BOND, M., SRIVASTAVA, V., MCKINLEY, K., AND
SHMATIKOV, V. Efficient, Context-Sensitive Detection of Se-
mantic Attacks. Tech. Rep. TR-09-14, UT Austin Computer Sci-
ences, 2009.

[7] COVA, M., BALZAROTTI, D., FELMETSGER, V., AND VIGNA,
G. Swaddler: An Approach for the Anomaly-based Detection of
State Violations in Web Applications. In Proceedings of the Inter-
national Symposium on Recent Advances in Intrusion Detection
(RAID) (2007), pp. 63–86.

[8] CSALLNER, C., SMARAGDAKIS, Y., AND XIE, T. Article 8 (37
pages)-DSD-Crasher: A Hybrid Analysis Tool for Bug Finding.
In ACM Transactions on Software Engineering and Methodology
(TOSEM) (April 2008).

[9] The Daikon invariant detector. http://groups.csail.
mit.edu/pag/daikon/.

[10] ENGLER, D., CHEN, D., HALLEM, S., CHOU, A., AND CHELF,
B. Bugs as deviant behavior: a general approach to inferring
errors in systems code. ACM SIGOPS Operating Systems Review
35, 5 (2001), 57–72.

[11] ERNST, M., PERKINS, J., GUO, P., MCCAMANT, S.,
PACHECO, C., TSCHANTZ, M., AND XIAO, C. The Daikon
System for Dynamic Detection of Likely Invariants. Science of
Computer Programming 69, 1–3 (Dec. 2007), 35–45.

[12] FOSSI, M. Symantec Global Internet Security Threat Report.
Tech. rep., Symantec, April 2009. Volume XIV.

[13] FOUNDATION, T. A. S. Apache Tomcat. http://tomcat.
apache.org/.

[14] GROSSMAN, J. Seven Business Logic Flaws That Put Your
Website at Risk. http://www.whitehatsec.com/home/
assets/WP bizlogic092407.pdf, September 2007.

[15] GUHA, A., KRISHNAMURTHI, S., AND JIM, T. Using static
analysis for Ajax intrusion detection. In Proceedings of the 18th
international conference on World wide web (2009), ACM New
York, NY, USA, pp. 561–570.

[16] HALFOND, W., AND ORSO, A. AMNESIA: Analysis and Moni-
toring for NEutralizing SQL-Injection Attacks. In Proceedings of
the International Conference on Automated Software Engineer-
ing (ASE) (November 2005), pp. 174–183.

[17] HUANG, Y.-W., YU, F., HANG, C., TSAI, C.-H., LEE, D.,
AND KUO, S.-Y. Securing Web Application Code by Static
Analysis and Runtime Protection. In Proceedings of the Interna-
tional World Wide Web Conference (WWW) (May 2004), pp. 40–
52.

[18] JOVANOVIC, N., KRUEGEL, C., AND KIRDA, E. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities. In
Proceedings of the IEEE Symposium on Security and Privacy
(May 2006).

[19] Java pathfinder. http://javapathfinder.
sourceforge.net/.

[20] KLEIN, A. Cross Site Scripting Explained. Tech. rep., Sanctum
Inc., June 2002.

[21] KREMENEK, T., TWOHEY, P., BACK, G., NG, A., AND EN-
GLER, D. From Uncertainty to Belief: Inferring the Specification
Within. In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI) (November 2006), pp. 161–
176.

[22] LIVSHITS, V., AND LAM, M. Finding Security Vulnerabilities
in Java Applications with Static Analysis. In Proceedings of the
USENIX Security Symposium (August 2005), pp. 271–286.

[23] MARTIN, M., AND LAM, M. Automatic Generation of XSS
and SQL Injection Attacks with Goal-Directed Model Checking.
In Proceedings of the USENIX Security Symposium (July 2008),
pp. 31–43.

[24] MICROSYSTEMS, S. Java Servlet Specification Version
2.4. http://java.sun.com/products/servlet/
reference/api/index.html, 2003.

17

[25] MIDDLEWARE, O. W. O. S. ASM. http://asm.
objectweb.org/.

[26] NGUYEN-TUONG, A., GUARNIERI, S., GREENE, D., AND
EVANS, D. Automatically Hardening Web Applications Using
Precise Tainting. In Proceedings of the International Information
Security Conference (SEC) (May 2005), pp. 372–382.

[27] NIMMER, J., AND ERNST, M. Static verification of dynamically
detected program invariants: Integrating Daikon and ESC/Java.
In Proceedings of RV’01, First Workshop on Runtime Verification
(2001).

[28] OPEN SOURCE SOFTWARE. SourceForge. http://
sourceforge.net.

[29] PALEARI, R., MARRONE, D., BRUSCHI, D., AND MONGA, M.
On race vulnerabilities in web applications. In Proceedings of the
Conference on Detection of Intrusions and Malware & Vulnera-
bility Assessment (DIMVA) (July 2008).

[30] PIETRASZEK, T., AND BERGHE, C. V. Defending against In-
jection Attacks through Context-Sensitive String Evaluation. In
Proceedings of the International Symposium on Recent Advances
in Intrusion Detections (RAID) (2005), pp. 372–382.

[31] SELENIUM DEVELOPMENT TEAM. Selenium: Web Application
Testing System. http://seleniumhq.org.

[32] SPETT, K. Blind SQL Injection. Tech. rep., SPI Dynamics, 2003.

[33] SU, Z., AND WASSERMANN, G. The Essence of Command
Injection Attacks in Web Applications. In Proceedings of the
Annual Symposium on Principles of Programming Languages
(POPL) (2006), pp. 372–382.

[34] TAN, L., ZHANG, X., MA, X., XIONG, W., AND ZHOU, Y.
AutoISES: Automatically Inferring Security Specifications and
Detecting Violations. In Proceedings of the USENIX Security
Symposium (July 2008), pp. 379–394.

[35] VISSER, W., HAVELUND, K., BRAT, G., PARK, S., AND
LERDA, F. Model Checking Programs. Automated Software En-
gineering Journal 10, 2 (Apr. 2003).

[36] XIE, Y., AND AIKEN, A. Static Detection of Security Vulner-
abilities in Scripting Languages. In Proceedings of the USENIX
Security Symposium (August 2006).

Notes
1As a consequence of that, JPF includes constraints that are no

longer relevant to the current execution into the application’s state, pre-
venting it from detecting otherwise equivalent states.

2Note that by using the simple strategy of removing all constraints
that reference no longer live variables, we might potentially lose some
of the implied constraints in the PC. This can reduce the effectiveness
of the reduction of the state space, but it does not interfere with the
soundness of the analysis.

3The names of the variables are generated as explained in Sec-
tion 4.1.

4When session data is accessed on a path, the PCA records that
fact, along with the key that was used. This is done by storing the
item session.<key> in an attribute of the memory location that holds
the reference to the object. The information is then propagated by JPF
with each bytecode instruction that accesses this memory location.

5A similar vulnerability was found by Waler in the JspCart applica-
tion. We use Jebbo as a simpler example.

6Note that our tool works on Java bytecode rather than source code.
Therefore, loop exit conditions are implicitly included, as they are im-
plemented in terms of IF opcodes.

7The code for the JspCart application is located in the SourceForge
repository under the name B2B eCommerce Project.

18

