Computer Science > Databases
[Submitted on 21 Apr 2009]
Title:Fast Algorithms for Mining Interesting Frequent Itemsets without Minimum Support
View PDFAbstract: Real world datasets are sparse, dirty and contain hundreds of items. In such situations, discovering interesting rules (results) using traditional frequent itemset mining approach by specifying a user defined input support threshold is not appropriate. Since without any domain knowledge, setting support threshold small or large can output nothing or a large number of redundant uninteresting results. Recently a novel approach of mining only N-most/Top-K interesting frequent itemsets has been proposed, which discovers the top N interesting results without specifying any user defined support threshold. However, mining interesting frequent itemsets without minimum support threshold are more costly in terms of itemset search space exploration and processing cost. Thereby, the efficiency of their mining highly depends upon three main factors (1) Database representation approach used for itemset frequency counting, (2) Projection of relevant transactions to lower level nodes of search space and (3) Algorithm implementation technique. Therefore, to improve the efficiency of mining process, in this paper we present two novel algorithms called (N-MostMiner and Top-K-Miner) using the bit-vector representation approach which is very efficient in terms of itemset frequency counting and transactions projection. In addition to this, several efficient implementation techniques of N-MostMiner and Top-K-Miner are also present which we experienced in our implementation. Our experimental results on benchmark datasets suggest that the NMostMiner and Top-K-Miner are very efficient in terms of processing time as compared to current best algorithms BOMO and TFP.
Current browse context:
cs.DB
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.