Mathematics > Numerical Analysis
[Submitted on 24 Apr 2009]
Title:Noisy Signal Recovery via Iterative Reweighted L1-Minimization
View PDFAbstract: Compressed sensing has shown that it is possible to reconstruct sparse high dimensional signals from few linear measurements. In many cases, the solution can be obtained by solving an L1-minimization problem, and this method is accurate even in the presence of noise. Recent a modified version of this method, reweighted L1-minimization, has been suggested. Although no provable results have yet been attained, empirical studies have suggested the reweighted version outperforms the standard method. Here we analyze the reweighted L1-minimization method in the noisy case, and provide provable results showing an improvement in the error bound over the standard bounds.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.