Computer Science > Information Theory
[Submitted on 26 Apr 2010 (v1), last revised 2 Apr 2011 (this version, v5)]
Title:Compressive MUSIC: A Missing Link Between Compressive Sensing and Array Signal Processing
View PDFAbstract:The multiple measurement vector (MMV) problem addresses the identification of unknown input vectors that share common sparse support. Even though MMV problems had been traditionally addressed within the context of sensor array signal processing, the recent trend is to apply compressive sensing (CS) due to its capability to estimate sparse support even with an insufficient number of snapshots, in which case classical array signal processing fails. However, CS guarantees the accurate recovery in a probabilistic manner, which often shows inferior performance in the regime where the traditional array signal processing approaches succeed. The apparent dichotomy between the {\em probabilistic} CS and {\em deterministic} sensor array signal processing have not been fully understood. The main contribution of the present article is a unified approach that unveils a {missing link} between CS and array signal processing. The new algorithm, which we call {\em compressive MUSIC}, identifies the parts of support using CS, after which the remaining supports are estimated using a novel generalized MUSIC criterion. Using a large system MMV model, we show that our compressive MUSIC requires a smaller number of sensor elements for accurate support recovery than the existing CS methods and can approach the optimal $l_0$-bound with finite number of snapshots.
Submission history
From: Jong Min Kim [view email][v1] Mon, 26 Apr 2010 01:55:30 UTC (1,870 KB)
[v2] Fri, 30 Apr 2010 01:30:19 UTC (1,870 KB)
[v3] Fri, 25 Jun 2010 05:10:38 UTC (3,130 KB)
[v4] Mon, 28 Jun 2010 04:57:37 UTC (2,298 KB)
[v5] Sat, 2 Apr 2011 01:41:57 UTC (2,899 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.