Physics > Medical Physics
[Submitted on 27 Sep 2010]
Title:Radiation therapy calculations using an on-demand virtual cluster via cloud computing
View PDFAbstract:Computer hardware costs are the limiting factor in producing highly accurate radiation dose calculations on convenient time scales. Because of this, large-scale, full Monte Carlo simulations and other resource intensive algorithms are often considered infeasible for clinical settings. The emerging cloud computing paradigm promises to fundamentally alter the economics of such calculations by providing relatively cheap, on-demand, pay-as-you-go computing resources over the Internet. We believe that cloud computing will usher in a new era, in which very large scale calculations will be routinely performed by clinics and researchers using cloud-based resources. In this research, several proof-of-concept radiation therapy calculations were successfully performed on a cloud-based virtual Monte Carlo cluster. Performance evaluations were made of a distributed processing framework developed specifically for this project. The expected 1/n performance was observed with some caveats. The economics of cloud-based virtual computing clusters versus traditional in-house hardware is also discussed. For most situations, cloud computing can provide a substantial cost savings for distributed calculations.
Current browse context:
physics.med-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.