Computer Science > Machine Learning
[Submitted on 14 Feb 2011 (v1), last revised 3 Sep 2012 (this version, v5)]
Title:Transductive Ordinal Regression
View PDFAbstract:Ordinal regression is commonly formulated as a multi-class problem with ordinal constraints. The challenge of designing accurate classifiers for ordinal regression generally increases with the number of classes involved, due to the large number of labeled patterns that are needed. The availability of ordinal class labels, however, is often costly to calibrate or difficult to obtain. Unlabeled patterns, on the other hand, often exist in much greater abundance and are freely available. To take benefits from the abundance of unlabeled patterns, we present a novel transductive learning paradigm for ordinal regression in this paper, namely Transductive Ordinal Regression (TOR). The key challenge of the present study lies in the precise estimation of both the ordinal class label of the unlabeled data and the decision functions of the ordinal classes, simultaneously. The core elements of the proposed TOR include an objective function that caters to several commonly used loss functions casted in transductive settings, for general ordinal regression. A label swapping scheme that facilitates a strictly monotonic decrease in the objective function value is also introduced. Extensive numerical studies on commonly used benchmark datasets including the real world sentiment prediction problem are then presented to showcase the characteristics and efficacies of the proposed transductive ordinal regression. Further, comparisons to recent state-of-the-art ordinal regression methods demonstrate the introduced transductive learning paradigm for ordinal regression led to the robust and improved performance.
Submission history
From: Chun Wei Seah [view email][v1] Mon, 14 Feb 2011 15:53:06 UTC (981 KB)
[v2] Tue, 15 Feb 2011 12:46:46 UTC (890 KB)
[v3] Thu, 30 Aug 2012 02:23:16 UTC (1,309 KB)
[v4] Fri, 31 Aug 2012 02:54:05 UTC (1,313 KB)
[v5] Mon, 3 Sep 2012 02:17:30 UTC (1,311 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.