Computer Science > Programming Languages
[Submitted on 25 Mar 2011 (v1), last revised 15 Sep 2011 (this version, v2)]
Title:Nested Refinements for Dynamic Languages
View PDFAbstract:Programs written in dynamic languages make heavy use of features --- run-time type tests, value-indexed dictionaries, polymorphism, and higher-order functions --- that are beyond the reach of type systems that employ either purely syntactic or purely semantic reasoning. We present a core calculus, System D, that merges these two modes of reasoning into a single powerful mechanism of nested refinement types wherein the typing relation is itself a predicate in the refinement logic. System D coordinates SMT-based logical implication and syntactic subtyping to automatically typecheck sophisticated dynamic language programs. By coupling nested refinements with McCarthy's theory of finite maps, System D can precisely reason about the interaction of higher-order functions, polymorphism, and dictionaries. The addition of type predicates to the refinement logic creates a circularity that leads to unique technical challenges in the metatheory, which we solve with a novel stratification approach that we use to prove the soundness of System D.
Submission history
From: Ravi Chugh [view email][v1] Fri, 25 Mar 2011 18:19:55 UTC (48 KB)
[v2] Thu, 15 Sep 2011 06:38:17 UTC (148 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.