Computer Science > Information Theory
[Submitted on 14 Apr 2011 (v1), last revised 19 Apr 2011 (this version, v2)]
Title:Distributed Stochastic Approximation for Constrained and Unconstrained Optimization
View PDFAbstract:In this paper, we analyze the convergence of a distributed Robbins-Monro algorithm for both constrained and unconstrained optimization in multi-agent systems. The algorithm searches for local minima of a (nonconvex) objective function which is supposed to coincide with a sum of local utility functions of the agents. The algorithm under study consists of two steps: a local stochastic gradient descent at each agent and a gossip step that drives the network of agents to a consensus. It is proved that i) an agreement is achieved between agents on the value of the estimate, ii) the algorithm converges to the set of Kuhn-Tucker points of the optimization problem. The proof relies on recent results about differential inclusions. In the context of unconstrained optimization, intelligible sufficient conditions are provided in order to ensure the stability of the algorithm. In the latter case, we also provide a central limit theorem which governs the asymptotic fluctuations of the estimate. We illustrate our results in the case of distributed power allocation for ad-hoc wireless networks.
Submission history
From: Pascal Bianchi [view email][v1] Thu, 14 Apr 2011 14:20:11 UTC (51 KB)
[v2] Tue, 19 Apr 2011 14:54:35 UTC (51 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.