Computer Science > Machine Learning
[Submitted on 4 May 2011]
Title:Domain Adaptation: Overfitting and Small Sample Statistics
View PDFAbstract:We study the prevalent problem when a test distribution differs from the training distribution. We consider a setting where our training set consists of a small number of sample domains, but where we have many samples in each domain. Our goal is to generalize to a new domain. For example, we may want to learn a similarity function using only certain classes of objects, but we desire that this similarity function be applicable to object classes not present in our training sample (e.g. we might seek to learn that "dogs are similar to dogs" even though images of dogs were absent from our training set). Our theoretical analysis shows that we can select many more features than domains while avoiding overfitting by utilizing data-dependent variance properties. We present a greedy feature selection algorithm based on using T-statistics. Our experiments validate this theory showing that our T-statistic based greedy feature selection is more robust at avoiding overfitting than the classical greedy procedure.
Submission history
From: Ruslan Salakhutdinov [view email][v1] Wed, 4 May 2011 15:50:44 UTC (294 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.