Computer Science > Social and Information Networks
[Submitted on 8 Jul 2011]
Title:Performance of Local Information Based Link Prediction: A Sampling Perspective
View PDFAbstract:Link prediction is pervasively employed to uncover the missing links in the snapshots of real-world networks, which are usually obtained from kinds of sampling methods. Contrarily, in the previous literature, in order to evaluate the performance of the prediction, the known edges in the sampled snapshot are divided into the training set and the probe set randomly, without considering the diverse sampling approaches beyond. However, different sampling methods might lead to different missing links, especially for the biased ones. For this reason, random partition based evaluation of performance is no longer convincing if we take the sampling method into account. Hence, in this paper, aim at filling this void, we try to reevaluate the performance of local information based link predictions through sampling methods governed division of the training set and the probe set. It is interesting that we find for different sampling methods, each prediction approach performs unevenly. Moreover, most of these predictions perform weakly when the sampling method is biased, which indicates that the performance of these methods is overestimated in the prior works.
Current browse context:
cs.SI
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.