Computer Science > Social and Information Networks
[Submitted on 17 Oct 2011 (v1), last revised 28 Mar 2012 (this version, v2)]
Title:Robustness of Information Diffusion Algorithms to Locally Bounded Adversaries
View PDFAbstract:We consider the problem of diffusing information in networks that contain malicious nodes. We assume that each normal node in the network has no knowledge of the network topology other than an upper bound on the number of malicious nodes in its neighborhood. We introduce a topological property known as r-robustness of a graph, and show that this property provides improved bounds on tolerating malicious behavior, in comparison to traditional concepts such as connectivity and minimum degree. We use this topological property to analyze the canonical problems of distributed consensus and broadcasting, and provide sufficient conditions for these operations to succeed. Finally, we provide a construction for r-robust graphs and show that the common preferential-attachment model for scale-free networks produces a robust graph.
Submission history
From: Shreyas Sundaram [view email][v1] Mon, 17 Oct 2011 22:51:50 UTC (97 KB)
[v2] Wed, 28 Mar 2012 00:25:46 UTC (51 KB)
Current browse context:
cs.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.