Computer Science > Computational Complexity
[Submitted on 2 Nov 2011]
Title:Making the long code shorter, with applications to the Unique Games Conjecture
View PDFAbstract:The long code is a central tool in hardness of approximation, especially in questions related to the unique games conjecture. We construct a new code that is exponentially more efficient, but can still be used in many of these applications. Using the new code we obtain exponential improvements over several known results, including the following:
1. For any eps > 0, we show the existence of an n vertex graph G where every set of o(n) vertices has expansion 1 - eps, but G's adjacency matrix has more than exp(log^delta n) eigenvalues larger than 1 - eps, where delta depends only on eps. This answers an open question of Arora, Barak and Steurer (FOCS 2010) who asked whether one can improve over the noise graph on the Boolean hypercube that has poly(log n) such eigenvalues.
2. A gadget that reduces unique games instances with linear constraints modulo K into instances with alphabet k with a blowup of K^polylog(K), improving over the previously known gadget with blowup of 2^K.
3. An n variable integrality gap for Unique Games that that survives exp(poly(log log n)) rounds of the SDP + Sherali Adams hierarchy, improving on the previously known bound of poly(log log n).
We show a connection between the local testability of linear codes and small set expansion in certain related Cayley graphs, and use this connection to derandomize the noise graph on the Boolean hypercube.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.