Computer Science > Software Engineering
[Submitted on 2 Feb 2012]
Title:Cryptographic Path Hardening: Hiding Vulnerabilities in Software through Cryptography
View PDFAbstract:We propose a novel approach to improving software security called Cryptographic Path Hardening, which is aimed at hiding security vulnerabilities in software from attackers through the use of provably secure and obfuscated cryptographic devices to harden paths in programs.
By "harden" we mean that certain error-checking if-conditionals in a given program P are replaced by equivalent" we mean that adversaries cannot use semi-automatic program analysis techniques to reason about the hardened program paths and thus cannot discover as-yet-unknown errors along those paths, except perhaps through black-box dictionary attacks or random testing (which we can never prevent).
Other than these unpreventable attack methods, we can make program analysis aimed at error-finding "provably hard" for a resource-bounded attacker, in the same sense that cryptographic schemes are hard to break. Unlike security-through-obscurity, in Cryptographic Path Hardening we use provably-secure crypto devices to hide errors and our mathematical arguments of security are the same as the standard ones used in cryptography.
One application of Cryptographic Path Hardening is that software patches or filters often reveal enough information to an attacker that they can be used to construct error-revealing inputs to exploit an unpatched version of the program. By "hardening" the patch we make it difficult for the attacker to analyze the patched program to construct error-revealing inputs, and thus prevent him from potentially constructing exploits.
Current browse context:
cs.SE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.