Computer Science > Databases
[Submitted on 30 May 2012]
Title:SEAL: Spatio-Textual Similarity Search
View PDFAbstract:Location-based services (LBS) have become more and more ubiquitous recently. Existing methods focus on finding relevant points-of-interest (POIs) based on users' locations and query keywords. Nowadays, modern LBS applications generate a new kind of spatio-textual data, regions-of-interest (ROIs), containing region-based spatial information and textual description, e.g., mobile user profiles with active regions and interest tags. To satisfy search requirements on ROIs, we study a new research problem, called spatio-textual similarity search: Given a set of ROIs and a query ROI, we find the similar ROIs by considering spatial overlap and textual similarity. Spatio-textual similarity search has many important applications, e.g., social marketing in location-aware social networks. It calls for an efficient search method to support large scales of spatio-textual data in LBS systems. To this end, we introduce a filter-and-verification framework to compute the answers. In the filter step, we generate signatures for the ROIs and the query, and utilize the signatures to generate candidates whose signatures are similar to that of the query. In the verification step, we verify the candidates and identify the final answers. To achieve high performance, we generate effective high-quality signatures, and devise efficient filtering algorithms as well as pruning techniques. Experimental results on real and synthetic datasets show that our method achieves high performance.
Submission history
From: Ju Fan [view email] [via Ahmet Sacan as proxy][v1] Wed, 30 May 2012 14:32:51 UTC (484 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.