Computer Science > Artificial Intelligence
[Submitted on 11 Jun 2012]
Title:Uncertain and Approximative Knowledge Representation to Reasoning on Classification with a Fuzzy Networks Based System
View PDFAbstract:The approach described here allows to use the fuzzy Object Based Representation of imprecise and uncertain knowledge. This representation has a great practical interest due to the possibility to realize reasoning on classification with a fuzzy semantic network based system. For instance, the distinction between necessary, possible and user classes allows to take into account exceptions that may appear on fuzzy knowledge-base and facilitates integration of user's Objects in the base. This approach describes the theoretical aspects of the architecture of the whole experimental A.I. system we built in order to provide effective on-line assistance to users of new technological systems: the understanding of "how it works" and "how to complete tasks" from queries in quite natural languages. In our model, procedural semantic networks are used to describe the knowledge of an "ideal" expert while fuzzy sets are used both to describe the approximative and uncertain knowledge of novice users in fuzzy semantic networks which intervene to match fuzzy labels of a query with categories from our "ideal" expert.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.