Computer Science > Data Structures and Algorithms
[Submitted on 11 Jul 2012 (v1), last revised 17 Nov 2012 (this version, v2)]
Title:On Optimal Top-K String Retrieval
View PDFAbstract:Let ${\cal{D}}$ = $\{d_1, d_2, d_3, ..., d_D\}$ be a given set of $D$ (string) documents of total length $n$. The top-$k$ document retrieval problem is to index $\cal{D}$ such that when a pattern $P$ of length $p$, and a parameter $k$ come as a query, the index returns the $k$ most relevant documents to the pattern $P$. Hon et. al. \cite{HSV09} gave the first linear space framework to solve this problem in $O(p + k\log k)$ time. This was improved by Navarro and Nekrich \cite{NN12} to $O(p + k)$. These results are powerful enough to support arbitrary relevance functions like frequency, proximity, PageRank, etc. In many applications like desktop or email search, the data resides on disk and hence disk-bound indexes are needed. Despite of continued progress on this problem in terms of theoretical, practical and compression aspects, any non-trivial bounds in external memory model have so far been elusive. Internal memory (or RAM) solution to this problem decomposes the problem into $O(p)$ subproblems and thus incurs the additive factor of $O(p)$. In external memory, these approaches will lead to $O(p)$ I/Os instead of optimal $O(p/B)$ I/O term where $B$ is the block-size. We re-interpret the problem independent of $p$, as interval stabbing with priority over tree-shaped structure. This leads us to a linear space index in external memory supporting top-$k$ queries (with unsorted outputs) in near optimal $O(p/B + \log_B n + \log^{(h)} n + k/B)$ I/Os for any constant $h${$\log^{(1)}n =\log n$ and $\log^{(h)} n = \log (\log^{(h-1)} n)$}. Then we get $O(n\log^*n)$ space index with optimal $O(p/B+\log_B n + k/B)$ I/Os.
Submission history
From: sharma V. Thankachan Mr [view email][v1] Wed, 11 Jul 2012 13:30:06 UTC (144 KB)
[v2] Sat, 17 Nov 2012 15:55:16 UTC (221 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.