Computer Science > Information Theory
[Submitted on 25 Sep 2012 (v1), last revised 26 Sep 2012 (this version, v2)]
Title:On Capacity of Large-Scale MIMO Multiple Access Channels with Distributed Sets of Correlated Antennas
View PDFAbstract:In this paper, a deterministic equivalent of ergodic sum rate and an algorithm for evaluating the capacity-achieving input covariance matrices for the uplink large-scale multiple-input multiple-output (MIMO) antenna channels are proposed. We consider a large-scale MIMO system consisting of multiple users and one base station with several distributed antenna sets. Each link between a user and an antenna set forms a two-sided spatially correlated MIMO channel with line-of-sight (LOS) components. Our derivations are based on novel techniques from large dimensional random matrix theory (RMT) under the assumption that the numbers of antennas at the terminals approach to infinity with a fixed ratio. The deterministic equivalent results (the deterministic equivalent of ergodic sum rate and the capacity-achieving input covariance matrices) are easy to compute and shown to be accurate for realistic system dimensions. In addition, they are shown to be invariant to several types of fading distribution.
Submission history
From: Jun Zhang [view email][v1] Tue, 25 Sep 2012 06:47:02 UTC (3,074 KB)
[v2] Wed, 26 Sep 2012 12:38:30 UTC (3,074 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.