Computer Science > Social and Information Networks
[Submitted on 1 Dec 2012]
Title:A scalable mining of frequent quadratic concepts in d-folksonomies
View PDFAbstract:Folksonomy mining is grasping the interest of web 2.0 community since it represents the core data of social resource sharing systems. However, a scrutiny of the related works interested in mining folksonomies unveils that the time stamp dimension has not been considered. For example, the wealthy number of works dedicated to mining tri-concepts from folksonomies did not take into account time dimension. In this paper, we will consider a folksonomy commonly composed of triples <users, tags, resources> and we shall consider the time as a new dimension. We motivate our approach by highlighting the battery of potential applications. Then, we present the foundations for mining quadri-concepts, provide a formal definition of the problem and introduce a new efficient algorithm, called QUADRICONS for its solution to allow for mining folksonomies in time, i.e., d-folksonomies. We also introduce a new closure operator that splits the induced search space into equivalence classes whose smallest elements are the quadri-minimal generators. Carried out experiments on large-scale real-world datasets highlight good performances of our algorithm.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.