Mathematics > Optimization and Control
[Submitted on 20 Dec 2012 (v1), last revised 22 Apr 2014 (this version, v2)]
Title:Network Risk Limiting Dispatch: Optimal Control and Price of Uncertainty
View PDFAbstract:Increased uncertainty due to high penetration of renewables imposes significant costs to the system operators. The added costs depend on several factors including market design, performance of renewable generation forecasting and the specific dispatch procedure. Quantifying these costs has been limited to small sample Monte Carlo approaches applied specific dispatch algorithms. The computational complexity and accuracy of these approaches has limited the understanding of tradeoffs between different factors. {In this work we consider a two-stage stochastic economic dispatch problem. Our goal is to provide an analytical quantification and an intuitive understanding of the effects of uncertainties and network congestion on the dispatch procedure and the optimal cost.} We first consider an uncongested network and calculate the risk limiting dispatch. In addition, we derive the price of uncertainty, a number that characterizes the intrinsic impact of uncertainty on the integration cost of renewables. Then we extend the results to a network where one link can become congested. Under mild conditions, we calculate price of uncertainty even in this case. We show that risk limiting dispatch is given by a set of deterministic equilibrium equations. The dispatch solution yields an important insight: congested links do not create isolated nodes, even in a two-node network. In fact, the network can support backflows in congested links, that are useful to reduce the uncertainty by averaging supply across the network. We demonstrate the performance of our approach in standard IEEE benchmark networks.
Submission history
From: Baosen Zhang [view email][v1] Thu, 20 Dec 2012 01:13:20 UTC (215 KB)
[v2] Tue, 22 Apr 2014 17:21:27 UTC (213 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.