Computer Science > Computer Science and Game Theory
[Submitted on 28 Apr 2013 (v1), last revised 31 Jul 2013 (this version, v2)]
Title:Sybil-proof Mechanisms in Query Incentive Networks
View PDFAbstract:In this paper, we study incentive mechanisms for retrieving information from networked agents. Following the model in [Kleinberg and Raghavan 2005], the agents are represented as nodes in an infinite tree, which is generated by a random branching process. A query is issued by the root, and each node possesses an answer with an independent probability $p=1/n$. Further, each node in the tree acts strategically to maximize its own payoff. In order to encourage the agents to participate in the information acquisition process, an incentive mechanism is needed to reward agents who provide the information as well as agents who help to facilitate such acquisition.
We focus on designing efficient sybil-proof incentive mechanisms, i.e., which are robust to fake identity attacks. %We consider incentive mechanisms which are sybil-proof, i.e., robust to fake identity attacks. We propose a family of mechanisms, called the direct referral (DR) mechanisms, which allocate most reward to the information holder as well as its direct parent (or direct referral). We show that, when designed properly, the direct referral mechanism is sybil-proof and efficient. In particular, we show that we may achieve an expected cost of $O(h^2)$ for propagating the query down $h$ levels for any branching factor $b>1$. This result exponentially improves on previous work when requiring to find an answer with high probability. When the underlying network is a deterministic chain, our mechanism is optimal under some mild assumptions. In addition, due to its simple reward structure, the DR mechanism might have good chance to be adopted in practice.
Submission history
From: Yajun Wang [view email][v1] Sun, 28 Apr 2013 06:30:32 UTC (54 KB)
[v2] Wed, 31 Jul 2013 23:13:50 UTC (54 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.