Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Aug 2013 (v1), last revised 12 Sep 2015 (this version, v2)]
Title:Compositional Dictionaries for Domain Adaptive Face Recognition
View PDFAbstract:We present a dictionary learning approach to compensate for the transformation of faces due to changes in view point, illumination, resolution, etc. The key idea of our approach is to force domain-invariant sparse coding, i.e., design a consistent sparse representation of the same face in different domains. In this way, classifiers trained on the sparse codes in the source domain consisting of frontal faces for example can be applied to the target domain (consisting of faces in different poses, illumination conditions, etc) without much loss in recognition accuracy. The approach is to first learn a domain base dictionary, and then describe each domain shift (identity, pose, illumination) using a sparse representation over the base dictionary. The dictionary adapted to each domain is expressed as sparse linear combinations of the base dictionary. In the context of face recognition, with the proposed compositional dictionary approach, a face image can be decomposed into sparse representations for a given subject, pose and illumination respectively. This approach has three advantages: first, the extracted sparse representation for a subject is consistent across domains and enables pose and illumination insensitive face recognition. Second, sparse representations for pose and illumination can subsequently be used to estimate the pose and illumination condition of a face image. Finally, by composing sparse representations for subject and the different domains, we can also perform pose alignment and illumination normalization. Extensive experiments using two public face datasets are presented to demonstrate the effectiveness of our approach for face recognition.
Submission history
From: Qiang Qiu [view email][v1] Thu, 1 Aug 2013 17:27:31 UTC (3,334 KB)
[v2] Sat, 12 Sep 2015 20:55:51 UTC (3,631 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.