Computer Science > Computer Science and Game Theory
[Submitted on 19 Aug 2013]
Title:The Price of Anarchy is Unbounded for Congestion Games with Superpolynomial Latency Costs
View PDFAbstract:We consider non-cooperative unsplittable congestion games where players share resources, and each player's strategy is pure and consists of a subset of the resources on which it applies a fixed weight. Such games represent unsplittable routing flow games and also job allocation games. The congestion of a resource is the sum of the weights of the players that use it and the player's cost function is the sum of the utilities of the resources on its strategy. The social cost is the total weighted sum of the player's costs. The quality of Nash equilibria is determined by the price of anarchy ($PoA$) which expresses how much worse is the social outcome in the worst equilibrium versus the optimal coordinated solution. In the literature the predominant work has only been on games with polynomial utility costs, where it has been proven that the price of anarchy is bounded by the degree of the polynomial. However, no results exist on general bounds for non-polynomial utility functions.
Here, we consider general versions of these games in which the utility of each resource is an arbitrary non-decreasing function of the congestion. In particular, we consider a large family of superpolynomial utility functions which are asymptotically larger than any polynomial. We demonstrate that for every such function there exist games for which the price of anarchy is unbounded and increasing with the number of players (even if they have infinitesimal weights) while network resources remain fixed. We give tight lower and upper bounds which show this dependence on the number of players. Furthermore we provide an exact characterization of the $PoA$ of all congestion games whose utility costs are bounded above by a polynomial function. Heretofore such results existed only for games with polynomial cost functions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.