Computer Science > Machine Learning
[Submitted on 24 Aug 2013]
Title:A stochastic hybrid model of a biological filter
View PDFAbstract:We present a hybrid model of a biological filter, a genetic circuit which removes fast fluctuations in the cell's internal representation of the extra cellular environment. The model takes the classic feed-forward loop (FFL) motif and represents it as a network of continuous protein concentrations and binary, unobserved gene promoter states. We address the problem of statistical inference and parameter learning for this class of models from partial, discrete time observations. We show that the hybrid representation leads to an efficient algorithm for approximate statistical inference in this circuit, and show its effectiveness on a simulated data set.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Sat, 24 Aug 2013 14:34:38 UTC (253 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.