Computer Science > Software Engineering
[Submitted on 12 Sep 2013 (v1), last revised 16 Jan 2017 (this version, v2)]
Title:Robust Dynamic Selection of Tested Modules in Software Testing for Maximizing Delivered Reliability
View PDFAbstract:Software testing is aimed to improve the delivered reliability of the users. Delivered reliability is the reliability of using the software after it is delivered to the users. Usually the software consists of many modules. Thus, the delivered reliability is dependent on the operational profile which specifies how the users will use these modules as well as the defect number remaining in each module. Therefore, a good testing policy should take the operational profile into account and dynamically select tested modules according to the current state of the software during the testing process. This paper discusses how to dynamically select tested modules in order to maximize delivered reliability by formulating the selection problem as a dynamic programming problem. As the testing process is performed only once, risk must be considered during the testing process, which is described by the tester's utility function in this paper. Besides, since usually the tester has no accurate estimate of the operational profile, by employing robust optimization technique, we analysis the selection problem in the worst case, given the uncertainty set of operational profile. By numerical examples, we show the necessity of maximizing delivered reliability directly and using robust optimization technique when the tester has no clear idea of the operational profile. Moreover, it is shown that the risk averse behavior of the tester has a major influence on the delivered reliability.
Submission history
From: Ping Cao Dr [view email][v1] Thu, 12 Sep 2013 07:54:36 UTC (676 KB)
[v2] Mon, 16 Jan 2017 09:34:56 UTC (96 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.