Computer Science > Social and Information Networks
[Submitted on 16 Sep 2013]
Title:Bounded Confidence Opinion Dynamics in a Social Network of Bayesian Decision Makers
View PDFAbstract:Bounded confidence opinion dynamics model the propagation of information in social networks. However in the existing literature, opinions are only viewed as abstract quantities without semantics rather than as part of a decision-making system. In this work, opinion dynamics are examined when agents are Bayesian decision makers that perform hypothesis testing or signal detection, and the dynamics are applied to prior probabilities of hypotheses. Bounded confidence is defined on prior probabilities through Bayes risk error divergence, the appropriate measure between priors in hypothesis testing. This definition contrasts with the measure used between opinions in standard models: absolute error. It is shown that the rapid convergence of prior probabilities to a small number of limiting values is similar to that seen in the standard Krause-Hegselmann model. The most interesting finding in this work is that the number of these limiting values and the time to convergence changes with the signal-to-noise ratio in the detection task. The number of final values or clusters is maximal at intermediate signal-to-noise ratios, suggesting that the most contentious issues lead to the largest number of factions. It is at these same intermediate signal-to-noise ratios at which the degradation in detection performance of the aggregate vote of the decision makers is greatest in comparison to the Bayes optimal detection performance.
Current browse context:
cs.SI
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.