Computer Science > Systems and Control
[Submitted on 5 Dec 2013]
Title:A Passivity Framework for Modeling and Mitigating Wormhole Attacks on Networked Control Systems
View PDFAbstract:Networked control systems consist of distributed sensors and actuators that communicate via a wireless network. The use of an open wireless medium and unattended deployment leaves these systems vulnerable to intelligent adversaries whose goal is to disrupt the system performance. In this paper, we study the wormhole attack on a networked control system, in which an adversary establishes a link between two distant regions of the network by using either high-gain antennas, as in the out-of-band wormhole, or colluding network nodes as in the in-band wormhole. Wormholes allow the adversary to violate the timing constraints of real-time control systems by delaying or dropping packets, and cannot be detected using cryptographic mechanisms alone. We study the impact of the wormhole attack on the network flows and delays and introduce a passivity-based control-theoretic framework for modeling the wormhole attack. We develop this framework for both the in-band and out-of-band wormhole attacks as well as complex, hereto-unreported wormhole attacks consisting of arbitrary combinations of in-and out-of band wormholes. We integrate existing mitigation strategies into our framework, and analyze the throughput, delay, and stability properties of the overall system. Through simulation study, we show that, by selectively dropping control packets, the wormhole attack can cause disturbances in the physical plant of a networked control system, and demonstrate that appropriate selection of detection parameters mitigates the disturbances due to the wormhole while satisfying the delay constraints of the physical system.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.