Computer Science > Networking and Internet Architecture
[Submitted on 14 Dec 2013]
Title:Hybrid Radio-map for Noise Tolerant Wireless Indoor Localization
View PDFAbstract:In wireless networks, radio-map based locating techniques are commonly used to cope the complex fading feature of radio signal, in which a radio-map is built by calibrating received signal strength (RSS) signatures at training locations in the offline phase. However, in severe hostile environments, such as in ship cabins where severe shadowing, blocking and multi-path fading effects are posed by ubiquitous metallic architecture, even radio-map cannot capture the dynamics of RSS. In this paper, we introduced multiple feature radio-map location method for severely noisy environments. We proposed to add low variance signature into radio map. Since the low variance signatures are generally expensive to obtain, we focus on the scenario when the low variance signatures are sparse. We studied efficient construction of multi-feature radio-map in offline phase, and proposed feasible region narrowing down and particle based algorithm for online tracking. Simulation results show the remarkably performance improvement in terms of positioning accuracy and robustness against RSS noises than the traditional radio-map method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.