Computer Science > Computer Science and Game Theory
[Submitted on 4 Feb 2014]
Title:Sharing Rewards in Cooperative Connectivity Games
View PDFAbstract:We consider how selfish agents are likely to share revenues derived from maintaining connectivity between important network servers. We model a network where a failure of one node may disrupt communication between other nodes as a cooperative game called the vertex Connectivity Game (CG). In this game, each agent owns a vertex, and controls all the edges going to and from that vertex. A coalition of agents wins if it fully connects a certain subset of vertices in the graph, called the primary vertices. Power indices measure an agents ability to affect the outcome of the game. We show that in our domain, such indices can be used to both determine the fair share of the revenues an agent is entitled to, and identify significant possible points of failure affecting the reliability of communication in the network. We show that in general graphs, calculating the Shapley and Banzhaf power indices is #P-complete, but suggest a polynomial algorithm for calculating them in trees. We also investigate finding stable payoff divisions of the revenues in CGs, captured by the game theoretic solution of the core, and its relaxations, the epsilon-core and least core. We show a polynomial algorithm for computing the core of a CG, but show that testing whether an imputation is in the epsilon-core is coNP-complete. Finally, we show that for trees, it is possible to test for epsilon-core imputations in polynomial time.
Submission history
From: Yoram Bachrach [view email] [via jair.org as proxy][v1] Tue, 4 Feb 2014 01:38:31 UTC (372 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.