Computer Science > Data Structures and Algorithms
[Submitted on 16 Feb 2014]
Title:Throughput Maximization in Multiprocessor Speed-Scaling
View PDFAbstract:We are given a set of $n$ jobs that have to be executed on a set of $m$ speed-scalable machines that can vary their speeds dynamically using the energy model introduced in [Yao et al., FOCS'95]. Every job $j$ is characterized by its release date $r_j$, its deadline $d_j$, its processing volume $p_{i,j}$ if $j$ is executed on machine $i$ and its weight $w_j$. We are also given a budget of energy $E$ and our objective is to maximize the weighted throughput, i.e. the total weight of jobs that are completed between their respective release dates and deadlines. We propose a polynomial-time approximation algorithm where the preemption of the jobs is allowed but not their migration. Our algorithm uses a primal-dual approach on a linearized version of a convex program with linear constraints. Furthermore, we present two optimal algorithms for the non-preemptive case where the number of machines is bounded by a fixed constant. More specifically, we consider: {\em (a)} the case of identical processing volumes, i.e. $p_{i,j}=p$ for every $i$ and $j$, for which we present a polynomial-time algorithm for the unweighted version, which becomes a pseudopolynomial-time algorithm for the weighted throughput version, and {\em (b)} the case of agreeable instances, i.e. for which $r_i \le r_j$ if and only if $d_i \le d_j$, for which we present a pseudopolynomial-time algorithm. Both algorithms are based on a discretization of the problem and the use of dynamic programming.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.