Computer Science > Emerging Technologies
[Submitted on 23 Mar 2014 (v1), last revised 27 Feb 2015 (this version, v2)]
Title:Applicability of Well-Established Memristive Models for Simulations of Resistive Switching Devices
View PDFAbstract:Highly accurate and predictive models of resistive switching devices are needed to enable future memory and logic design. Widely used is the memristive modeling approach considering resistive switches as dynamical systems. Here we introduce three evaluation criteria for memristor models, checking for plausibility of the I-V characteristics, the presence of a sufficiently non-linearity of the switching kinetics, and the feasibility of predicting the behavior of two anti-serially connected devices correctly. We analyzed two classes of models: the first class comprises common linear memristor models and the second class widely used non-linear memristive models. The linear memristor models are based on Strukovs initial memristor model extended by different window functions, while the non-linear models include Picketts physics-based memristor model and models derived thereof. This study reveals lacking predictivity of the first class of models, independent of the applied window function. Only the physics-based model is able to fulfill most of the basic evaluation criteria.
Submission history
From: Eike Linn [view email][v1] Sun, 23 Mar 2014 21:01:06 UTC (1,981 KB)
[v2] Fri, 27 Feb 2015 14:30:09 UTC (3,715 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.