Computer Science > Data Structures and Algorithms
[Submitted on 3 Apr 2014]
Title:Dynamic Windows Scheduling with Reallocation
View PDFAbstract:We consider the Windows Scheduling problem. The problem is a restricted version of Unit-Fractions Bin Packing, and it is also called Inventory Replenishment in the context of Supply Chain. In brief, the problem is to schedule the use of communication channels to clients. Each client ci is characterized by an active cycle and a window wi. During the period of time that any given client ci is active, there must be at least one transmission from ci scheduled in any wi consecutive time slots, but at most one transmission can be carried out in each channel per time slot. The goal is to minimize the number of channels used. We extend previous online models, where decisions are permanent, assuming that clients may be reallocated at some cost. We assume that such cost is a constant amount paid per reallocation. That is, we aim to minimize also the number of reallocations. We present three online reallocation algorithms for Windows Scheduling. We evaluate experimentally these protocols showing that, in practice, all three achieve constant amortized reallocations with close to optimal channel usage. Our simulations also expose interesting trade-offs between reallocations and channel usage. We introduce a new objective function for WS with reallocations, that can be also applied to models where reallocations are not possible. We analyze this metric for one of the algorithms which, to the best of our knowledge, is the first online WS protocol with theoretical guarantees that applies to scenarios where clients may leave and the analysis is against current load rather than peak load. Using previous results, we also observe bounds on channel usage for one of the algorithms.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.