Computer Science > Social and Information Networks
[Submitted on 4 Apr 2014]
Title:Studying Social Networks at Scale: Macroscopic Anatomy of the Twitter Social Graph
View PDFAbstract:Twitter is one of the largest social networks using exclusively directed links among accounts. This makes the Twitter social graph much closer to the social graph supporting real life communications than, for instance, Facebook. Therefore, understanding the structure of the Twitter social graph is interesting not only for computer scientists, but also for researchers in other fields, such as sociologists. However, little is known about how the information propagation in Twitter is constrained by its inner structure. In this paper, we present an in-depth study of the macroscopic structure of the Twitter social graph unveiling the highways on which tweets propagate, the specific user activity associated with each component of this macroscopic structure, and the evolution of this macroscopic structure with time for the past 6 years. For this study, we crawled Twitter to retrieve all accounts and all social relationships (follow links) among accounts; the crawl completed in July 2012 with 505 million accounts interconnected by 23 billion links. Then, we present a methodology to unveil the macroscopic structure of the Twitter social graph. This macroscopic structure consists of 8 components defined by their connectivity characteristics. Each component group users with a specific usage of Twitter. For instance, we identified components gathering together spammers, or celebrities. Finally, we present a method to approximate the macroscopic structure of the Twitter social graph in the past, validate this method using old datasets, and discuss the evolution of the macroscopic structure of the Twitter social graph during the past 6 years.
Submission history
From: Maksym Gabielkov [view email] [via CCSD proxy][v1] Fri, 4 Apr 2014 19:33:22 UTC (1,075 KB)
Current browse context:
cs.SI
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.