Computer Science > Symbolic Computation
[Submitted on 18 Apr 2014]
Title:Nearly Optimal Computations with Structured Matrices
View PDFAbstract:We estimate the Boolean complexity of multiplication of structured matrices by a vector and the solution of nonsingular linear systems of equations with these matrices. We study four basic most popular classes, that is, Toeplitz, Hankel, Cauchy and Van-der-monde matrices, for which the cited computational problems are equivalent to the task of polynomial multiplication and division and polynomial and rational multipoint evaluation and interpolation. The Boolean cost estimates for the latter problems have been obtained by Kirrinnis in \cite{kirrinnis-joc-1998}, except for rational interpolation, which we supply now. All known Boolean cost estimates for these problems rely on using Kronecker product. This implies the $d$-fold precision increase for the $d$-th degree output, but we avoid such an increase by relying on distinct techniques based on employing FFT. Furthermore we simplify the analysis and make it more transparent by combining the representation of our tasks and algorithms in terms of both structured matrices and polynomials and rational functions. This also enables further extensions of our estimates to cover Trummer's important problem and computations with the popular classes of structured matrices that generalize the four cited basic matrix classes.
Submission history
From: Elias Tsigaridas [view email] [via CCSD proxy][v1] Fri, 18 Apr 2014 12:43:34 UTC (58 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.