Computer Science > Social and Information Networks
[Submitted on 22 Apr 2014 (v1), last revised 23 Jan 2015 (this version, v3)]
Title:Characterizing Information Spreading in Online Social Networks
View PDFAbstract:Online social networks (OSNs) are changing the way in which the information spreads throughout the Internet. A deep understanding of the information spreading in OSNs leads to both social and commercial benefits. In this paper, we characterize the dynamic of information spreading (e.g., how fast and widely the information spreads against time) in OSNs by developing a general and accurate model based on the Interactive Markov Chains (IMCs) and mean-field theory. This model explicitly reveals the impacts of the network topology on information spreading in OSNs. Further, we extend our model to feature the time-varying user behaviors and the ever-changing information popularity. The complicated dynamic patterns of information spreading are captured by our model using six key parameters. Extensive tests based on Renren's dataset validate the accuracy of our model, which demonstrate that it can characterize the dynamic patterns of video sharing in Renren precisely and predict future spreading tendency successfully.
Submission history
From: Sai Zhang [view email][v1] Tue, 22 Apr 2014 17:17:40 UTC (436 KB)
[v2] Thu, 24 Apr 2014 05:29:52 UTC (436 KB)
[v3] Fri, 23 Jan 2015 10:36:53 UTC (454 KB)
Current browse context:
cs.SI
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.