Computer Science > Data Structures and Algorithms
[Submitted on 23 Jul 2014]
Title:On the String Consensus Problem and the Manhattan Sequence Consensus Problem
View PDFAbstract:In the Manhattan Sequence Consensus problem (MSC problem) we are given $k$ integer sequences, each of length $l$, and we are to find an integer sequence $x$ of length $l$ (called a consensus sequence), such that the maximum Manhattan distance of $x$ from each of the input sequences is minimized. For binary sequences Manhattan distance coincides with Hamming distance, hence in this case the string consensus problem (also called string center problem or closest string problem) is a special case of MSC. Our main result is a practically efficient $O(l)$-time algorithm solving MSC for $k\le 5$ sequences. Practicality of our algorithms has been verified experimentally. It improves upon the quadratic algorithm by Amir et al.\ (SPIRE 2012) for string consensus problem for $k=5$ binary strings. Similarly as in Amir's algorithm we use a column-based framework. We replace the implied general integer linear programming by its easy special cases, due to combinatorial properties of the MSC for $k\le 5$. We also show that for a general parameter $k$ any instance can be reduced in linear time to a kernel of size $k!$, so the problem is fixed-parameter tractable. Nevertheless, for $k\ge 4$ this is still too large for any naive solution to be feasible in practice.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.