Mathematics > Combinatorics
[Submitted on 6 Aug 2014 (v1), last revised 9 Apr 2015 (this version, v2)]
Title:Factorization Norms and Hereditary Discrepancy
View PDFAbstract:The $\gamma_2$ norm of a real $m\times n$ matrix $A$ is the minimum number $t$ such that the column vectors of $A$ are contained in a $0$-centered ellipsoid $E\subseteq\mathbb{R}^m$ which in turn is contained in the hypercube $[-t, t]^m$. We prove that this classical quantity approximates the \emph{hereditary discrepancy} $\mathrm{herdisc}\ A$ as follows: $\gamma_2(A) = {O(\log m)}\cdot \mathrm{herdisc}\ A$ and $\mathrm{herdisc}\ A = O(\sqrt{\log m}\,)\cdot\gamma_2(A) $. Since $\gamma_2$ is polynomial-time computable, this gives a polynomial-time approximation algorithm for hereditary discrepancy. Both inequalities are shown to be asymptotically tight.
We then demonstrate on several examples the power of the $\gamma_2$ norm as a tool for proving lower and upper bounds in discrepancy theory. Most notably, we prove a new lower bound of $\Omega(\log^{d-1} n)$ for the \emph{$d$-dimensional Tusnády problem}, asking for the combinatorial discrepancy of an $n$-point set in $\mathbb{R}^d$ with respect to axis-parallel boxes. For $d>2$, this improves the previous best lower bound, which was of order approximately $\log^{(d-1)/2}n$, and it comes close to the best known upper bound of $O(\log^{d+1/2}n)$, for which we also obtain a new, very simple proof.
Submission history
From: Aleksandar Nikolov [view email][v1] Wed, 6 Aug 2014 18:59:10 UTC (1,174 KB)
[v2] Thu, 9 Apr 2015 00:28:28 UTC (1,187 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.