Statistics > Methodology
[Submitted on 27 Aug 2014 (v1), last revised 5 Feb 2015 (this version, v2)]
Title:Sparsity-Aware Sensor Collaboration for Linear Coherent Estimation
View PDFAbstract:In the context of distributed estimation, we consider the problem of sensor collaboration, which refers to the act of sharing measurements with neighboring sensors prior to transmission to a fusion center. While incorporating the cost of sensor collaboration, we aim to find optimal sparse collaboration schemes subject to a certain information or energy constraint. Two types of sensor collaboration problems are studied: minimum energy with an information constraint; and maximum information with an energy constraint. To solve the resulting sensor collaboration problems, we present tractable optimization formulations and propose efficient methods which render near-optimal solutions in numerical experiments. We also explore the situation in which there is a cost associated with the involvement of each sensor in the estimation scheme. In such situations, the participating sensors must be chosen judiciously. We introduce a unified framework to jointly design the optimal sensor selection and collaboration schemes. For a given estimation performance, we show empirically that there exists a trade-off between sensor selection and sensor collaboration.
Submission history
From: Sijia Liu [view email][v1] Wed, 27 Aug 2014 21:07:15 UTC (422 KB)
[v2] Thu, 5 Feb 2015 19:21:48 UTC (279 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.