Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Sep 2014 (v1), last revised 3 Sep 2015 (this version, v2)]
Title:Histogram of Oriented Principal Components for Cross-View Action Recognition
View PDFAbstract:Existing techniques for 3D action recognition are sensitive to viewpoint variations because they extract features from depth images which are viewpoint dependent. In contrast, we directly process pointclouds for cross-view action recognition from unknown and unseen views. We propose the Histogram of Oriented Principal Components (HOPC) descriptor that is robust to noise, viewpoint, scale and action speed variations. At a 3D point, HOPC is computed by projecting the three scaled eigenvectors of the pointcloud within its local spatio-temporal support volume onto the vertices of a regular dodecahedron. HOPC is also used for the detection of Spatio-Temporal Keypoints (STK) in 3D pointcloud sequences so that view-invariant STK descriptors (or Local HOPC descriptors) at these key locations only are used for action recognition. We also propose a global descriptor computed from the normalized spatio-temporal distribution of STKs in 4-D, which we refer to as STK-D. We have evaluated the performance of our proposed descriptors against nine existing techniques on two cross-view and three single-view human action recognition datasets. The Experimental results show that our techniques provide significant improvement over state-of-the-art methods.
Submission history
From: Hossein Rahmani [view email][v1] Wed, 24 Sep 2014 03:57:49 UTC (3,092 KB)
[v2] Thu, 3 Sep 2015 05:12:27 UTC (9,201 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.