Computer Science > Machine Learning
[Submitted on 20 Dec 2014 (v1), last revised 17 Jun 2015 (this version, v4)]
Title:Discovering Hidden Factors of Variation in Deep Networks
View PDFAbstract:Deep learning has enjoyed a great deal of success because of its ability to learn useful features for tasks such as classification. But there has been less exploration in learning the factors of variation apart from the classification signal. By augmenting autoencoders with simple regularization terms during training, we demonstrate that standard deep architectures can discover and explicitly represent factors of variation beyond those relevant for categorization. We introduce a cross-covariance penalty (XCov) as a method to disentangle factors like handwriting style for digits and subject identity in faces. We demonstrate this on the MNIST handwritten digit database, the Toronto Faces Database (TFD) and the Multi-PIE dataset by generating manipulated instances of the data. Furthermore, we demonstrate these deep networks can extrapolate `hidden' variation in the supervised signal.
Submission history
From: Brian Cheung [view email][v1] Sat, 20 Dec 2014 02:52:03 UTC (2,795 KB)
[v2] Fri, 27 Feb 2015 20:41:40 UTC (2,798 KB)
[v3] Fri, 17 Apr 2015 17:15:02 UTC (2,798 KB)
[v4] Wed, 17 Jun 2015 06:47:48 UTC (3,042 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.