Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Feb 2015]
Title:A new network-based algorithm for human activity recognition in video
View PDFAbstract:In this paper, a new network-transmission-based (NTB) algorithm is proposed for human activity recognition in videos. The proposed NTB algorithm models the entire scene as an error-free network. In this network, each node corresponds to a patch of the scene and each edge represents the activity correlation between the corresponding patches. Based on this network, we further model people in the scene as packages while human activities can be modeled as the process of package transmission in the network. By analyzing these specific "package transmission" processes, various activities can be effectively detected. The implementation of our NTB algorithm into abnormal activity detection and group activity recognition are described in detail in the paper. Experimental results demonstrate the effectiveness of our proposed algorithm.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.