Computer Science > Information Retrieval
[Submitted on 1 Nov 2015]
Title:Stochastic Top-k ListNet
View PDFAbstract:ListNet is a well-known listwise learning to rank model and has gained much attention in recent years. A particular problem of ListNet, however, is the high computation complexity in model training, mainly due to the large number of object permutations involved in computing the gradients. This paper proposes a stochastic ListNet approach which computes the gradient within a bounded permutation subset. It significantly reduces the computation complexity of model training and allows extension to Top-k models, which is impossible with the conventional implementation based on full-set permutations. Meanwhile, the new approach utilizes partial ranking information of human labels, which helps improve model quality. Our experiments demonstrated that the stochastic ListNet method indeed leads to better ranking performance and speeds up the model training remarkably.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.