Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Nov 2015 (v1), last revised 23 Nov 2015 (this version, v2)]
Title:ElSe: Ellipse Selection for Robust Pupil Detection in Real-World Environments
View PDFAbstract:Fast and robust pupil detection is an essential prerequisite for video-based eye-tracking in real-world settings. Several algorithms for image-based pupil detection have been proposed, their applicability is mostly limited to laboratory conditions. In realworld scenarios, automated pupil detection has to face various challenges, such as illumination changes, reflections (on glasses), make-up, non-centered eye recording, and physiological eye characteristics. We propose ElSe, a novel algorithm based on ellipse evaluation of a filtered edge image. We aim at a robust, resource-saving approach that can be integrated in embedded architectures e.g. driving. The proposed algorithm was evaluated against four state-of-the-art methods on over 93,000 hand-labeled images from which 55,000 are new images contributed by this work. On average, the proposed method achieved a 14.53% improvement on the detection rate relative to the best state-of-the-art performer. download:this ftp URL. de (password:eyedata).
Submission history
From: Wolfgang Fuhl [view email][v1] Fri, 20 Nov 2015 12:49:20 UTC (4,090 KB)
[v2] Mon, 23 Nov 2015 06:56:10 UTC (4,205 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.