Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Nov 2015]
Title:Learning High-level Prior with Convolutional Neural Networks for Semantic Segmentation
View PDFAbstract:This paper proposes a convolutional neural network that can fuse high-level prior for semantic image segmentation. Motivated by humans' vision recognition system, our key design is a three-layer generative structure consisting of high-level coding, middle-level segmentation and low-level image to introduce global prior for semantic segmentation. Based on this structure, we proposed a generative model called conditional variational auto-encoder (CVAE) that can build up the links behind these three layers. These important links include an image encoder that extracts high level info from image, a segmentation encoder that extracts high level info from segmentation, and a hybrid decoder that outputs semantic segmentation from the high level prior and input image. We theoretically derive the semantic segmentation as an optimization problem parameterized by these links. Finally, the optimization problem enables us to take advantage of state-of-the-art fully convolutional network structure for the implementation of the above encoders and decoder. Experimental results on several representative datasets demonstrate our supreme performance for semantic segmentation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.