Computer Science > Computation and Language
[Submitted on 4 Jan 2016]
Title:Distant IE by Bootstrapping Using Lists and Document Structure
View PDFAbstract:Distant labeling for information extraction (IE) suffers from noisy training data. We describe a way of reducing the noise associated with distant IE by identifying coupling constraints between potential instance labels. As one example of coupling, items in a list are likely to have the same label. A second example of coupling comes from analysis of document structure: in some corpora, sections can be identified such that items in the same section are likely to have the same label. Such sections do not exist in all corpora, but we show that augmenting a large corpus with coupling constraints from even a small, well-structured corpus can improve performance substantially, doubling F1 on one task.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.