Computer Science > Computation and Language
[Submitted on 9 Jan 2016]
Title:Empirical Gaussian priors for cross-lingual transfer learning
View PDFAbstract:Sequence model learning algorithms typically maximize log-likelihood minus the norm of the model (or minimize Hamming loss + norm). In cross-lingual part-of-speech (POS) tagging, our target language training data consists of sequences of sentences with word-by-word labels projected from translations in $k$ languages for which we have labeled data, via word alignments. Our training data is therefore very noisy, and if Rademacher complexity is high, learning algorithms are prone to overfit. Norm-based regularization assumes a constant width and zero mean prior. We instead propose to use the $k$ source language models to estimate the parameters of a Gaussian prior for learning new POS taggers. This leads to significantly better performance in multi-source transfer set-ups. We also present a drop-out version that injects (empirical) Gaussian noise during online learning. Finally, we note that using empirical Gaussian priors leads to much lower Rademacher complexity, and is superior to optimally weighted model interpolation.
Submission history
From: Anders Søgaard Anders Søgaard [view email][v1] Sat, 9 Jan 2016 23:34:05 UTC (11 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.