Computer Science > Systems and Control
[Submitted on 16 Jan 2016 (v1), last revised 7 Sep 2017 (this version, v3)]
Title:Network Identification with Latent Nodes via Auto-Regressive Models
View PDFAbstract:We consider linear time-invariant networks with unknown topology where only a manifest subset of the nodes can be directly actuated and measured while the state of the remaining latent nodes and their number are unknown. Our goal is to identify the transfer function of the manifest subnetwork and determine whether interactions between manifest nodes are direct or mediated by latent nodes. We show that, if there are no inputs to the latent nodes, the manifest transfer function can be approximated arbitrarily well in the H-infinity norm sense by the transfer function of an auto-regressive model and present a least-squares estimation method to construct the auto-regressive model from measured data. We show that the least-squares auto-regressive method guarantees an arbitrarily small H-infinity norm error in the approximation of the manifest transfer function, exponentially decaying once the model order exceeds a certain threshold. Finally, we show that when the latent subnetwork is acyclic, the proposed method achieves perfect identification of the manifest transfer function above a specific model order as the length of the data increases. Various examples illustrate our results.
Submission history
From: Yingbo Zhao [view email][v1] Sat, 16 Jan 2016 16:28:35 UTC (157 KB)
[v2] Tue, 24 Jan 2017 15:43:33 UTC (232 KB)
[v3] Thu, 7 Sep 2017 02:44:51 UTC (1,227 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.