Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Apr 2016 (v1), last revised 6 Jan 2017 (this version, v2)]
Title:Single-Image Depth Perception in the Wild
View PDFAbstract:This paper studies single-image depth perception in the wild, i.e., recovering depth from a single image taken in unconstrained settings. We introduce a new dataset "Depth in the Wild" consisting of images in the wild annotated with relative depth between pairs of random points. We also propose a new algorithm that learns to estimate metric depth using annotations of relative depth. Compared to the state of the art, our algorithm is simpler and performs better. Experiments show that our algorithm, combined with existing RGB-D data and our new relative depth annotations, significantly improves single-image depth perception in the wild.
Submission history
From: Weifeng Chen [view email][v1] Wed, 13 Apr 2016 18:19:35 UTC (4,819 KB)
[v2] Fri, 6 Jan 2017 16:05:35 UTC (9,305 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.